Câu hỏi:

05/07/2022 198 Lưu

Số nghiệm của phương trình \[{\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Sử dụng các công thức \({\log _{{a^n}}}{b^m} = \frac{m}{b}{\log _a}b{\rm{ }}\left( {0 < a \ne 1,b > 0} \right)\), \({\log _a}x - {\log _a}y = {\log _a}\frac{x}{y}{\rm{ }}\left( {0 < a \ne 1;x,y > 0} \right)\) để đưa phương trình về dạng phương trình logarit cơ bản.

ĐKXĐ: \(\left\{ \begin{array}{l}{x^2} + 4{\rm{x}} > 0\\2{\rm{x}} + 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > 0\\x < - 4\end{array} \right.\\x > \frac{{ - 3}}{2}\end{array} \right. \Leftrightarrow x > 0\).

\({\log _3}\left( {{x^2} + 4{\rm{x}}} \right) + {\log _{\frac{1}{3}}}\left( {2{\rm{x}} + 3} \right) = 0 \Leftrightarrow {\log _2}\left( {{x^2} + 4{\rm{x}}} \right) - {\log _3}\left( {2{\rm{x}} + 3} \right) = 0\)

\( \Leftrightarrow {\log _3}\frac{{{x^2} + 4}}{{2{\rm{x}} + 3}} = 0 \Leftrightarrow \frac{{{x^2} + 4{\rm{x}}}}{{2{\rm{x}} + 3}} = 1 \Leftrightarrow {x^2} + 4{\rm{x}} = 2{\rm{x}} + 3\)

\( \Leftrightarrow {x^2} + 2{\rm{x}} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1{\rm{ }}\left( {tm} \right)\\x = - 3{\rm{ }}\left( {ktm} \right)\end{array} \right. \Rightarrow S = \left\{ 1 \right\}\).

Vậy phương trình đã cho có duy nhất 1 nghiệm.

Chú ý: Lưu ý ĐKXĐ của phương trình.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Khi bắt đầu tiếp đất vật chuyển động được quảng đường là \(s = 162m\).

Ta có: \(s = \int\limits_0^t {\left( {10t - {t^2}} \right)dt} = \left. {\left( {5{t^2} - \frac{{{t^3}}}{3}} \right)} \right|_0^t = 5{t^2} - \frac{{{t^3}}}{3}\) (trong đó t là thời điểm vật tiếp đất).

Cho \(5{t^2} - \frac{{{t^3}}}{3} = 162 \Rightarrow t = 9\) (Do \(v\left( t \right) = 10t - {t^2} \Rightarrow 0 \le t \le 10\)).

Khi đó vận tốc của vật là: \(v\left( 9 \right) = 10.9 - {9^2} = 9{\rm{ }}\left( {{\rm{m/p}}} \right)\).

Câu 2

Lời giải

Đáp án D

\({3^{2{\rm{x}} - 1}} > 27 \Leftrightarrow {3^{2{\rm{x}} - 1}} > {3^3} \Leftrightarrow 2{\rm{x}} - 1 > 3 \Leftrightarrow x > 2\)

Vậy tập nghiệm của bất phương trình là \(\left( {2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP