Cho mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2\left( {m + 1} \right)x + \left( {2 - m} \right)y + 2\left( {m + 1} \right)z - 6\left( {m + 2} \right) = 0.\] Biết rằng khi m thay đổi, mặt cầu (S) luôn chứa một đường tròn cố định. Tọa độ tâm I của đường tròn đó là
Quảng cáo
Trả lời:
Đáp án D
Gọi \(M\left( {x;y;z} \right)\) là điểm cố định luôn thuộc mặt cầu \(\left( S \right)\).
Ta có: \({x^2} + {y^2} + {z^2} - 2\left( {m + 1} \right)x + \left( {2 - m} \right)y + 2\left( {m + 1} \right)z - 6\left( {m + 2} \right) = 0\) với mọi m
\( \Leftrightarrow \left( {{x^2} + {y^2} + {z^2} - 2{\rm{x}} + 2y + 2{\rm{z}} - 12} \right) - m\left( {2{\rm{x}} + y - 2{\rm{z}} + 6} \right) = 0\) với mọi m
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} - 2{\rm{x}} + 2y + 2{\rm{z}} - 12 = 0\\2{\rm{x}} + y - 2{\rm{z}} + 6 = 0\end{array} \right.\)
Vậy đường tròn cố định này là giao tuyến của mặt cầu
\(\left( {S'} \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} + 2y + 2{\rm{z}} - 12 = 0\) có tâm \(E\left( {1; - 1; - 1} \right)\) và mặt phẳng \(\left( P \right):2{\rm{x}} + y - 2{\rm{z}} + 6 = 0\).
Tâm I của đường tròn là hình chiếu của E trên \(\left( P \right)\).
Ta có: \(EI:\left\{ \begin{array}{l}x = 1 + 2t\\y = - 1 + t\\z = - 1 - 2t\end{array} \right. \Rightarrow E = EI \cap \left( P \right) \Rightarrow I\left( { - 1; - 2;1} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Khi bắt đầu tiếp đất vật chuyển động được quảng đường là \(s = 162m\).
Ta có: \(s = \int\limits_0^t {\left( {10t - {t^2}} \right)dt} = \left. {\left( {5{t^2} - \frac{{{t^3}}}{3}} \right)} \right|_0^t = 5{t^2} - \frac{{{t^3}}}{3}\) (trong đó t là thời điểm vật tiếp đất).
Cho \(5{t^2} - \frac{{{t^3}}}{3} = 162 \Rightarrow t = 9\) (Do \(v\left( t \right) = 10t - {t^2} \Rightarrow 0 \le t \le 10\)).
Khi đó vận tốc của vật là: \(v\left( 9 \right) = 10.9 - {9^2} = 9{\rm{ }}\left( {{\rm{m/p}}} \right)\).
Lời giải
Đáp án D
\({3^{2{\rm{x}} - 1}} > 27 \Leftrightarrow {3^{2{\rm{x}} - 1}} > {3^3} \Leftrightarrow 2{\rm{x}} - 1 > 3 \Leftrightarrow x > 2\)
Vậy tập nghiệm của bất phương trình là \(\left( {2; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.