Câu hỏi:

05/07/2022 853

Trong không gian tọa độ Oxyz, cho mặt cầu \[\left( {{S_1}} \right)\] có tâm \[{I_1}\left( {1;0;1} \right),\;\] bán kính \[{R_1} = 2\] và mặt cầu \[\left( {{S_2}} \right)\] có tâm \[{I_2}\left( {1;3;5} \right),\] bán kính \[{R_2} = 1.\] Đường thẳng d thay đổi nhưng luôn tiếp xúc với \[\left( {{S_1}} \right),\;\left( {{S_2}} \right)\] lần lượt tại A và B. Gọi \[M,\;m\] lần lượt là giá trị lớn nhất và nhỏ nhất của đoạn AB. Tính giá trị của \[P = M.m\]

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Ta có \({I_1}{I_2} = 5 > {R_1} + {R_2} = 3,{\rm{ }}{{\rm{I}}_1}A{\rm{ // }}{{\rm{I}}_2}B\).

Trong không gian tọa độ Oxyz, cho mặt cầu (S1)  có tâm I1(1;0;1) (ảnh 1)

Ta có \({I_1}I_2^2 = {\left( {\overrightarrow {{I_1}A} + \overrightarrow {AB} + \overrightarrow {B{I_2}} } \right)^2} = R_1^2 + A{B^2} + R_2^2 + 2\overrightarrow {{I_1}A} .\overrightarrow {B{I_2}} \)

\( \Rightarrow A{B^2} = 20 + 2\overrightarrow {{I_1}A} .\overrightarrow {{I_2}B} = 20 + 2.2.1.\cos \left( {\overrightarrow {{I_1}A} ,\overrightarrow {{I_2}B} } \right)\)

\( \Leftrightarrow \left\{ \begin{array}{l}\max AB = 2\sqrt 6 \Leftrightarrow \overrightarrow {{I_1}A} {\rm{ }} \nearrow \nearrow {\rm{ }}\overrightarrow {{I_2}B} \\\min AB = 4 \Leftrightarrow \overrightarrow {{I_1}A} {\rm{ }} \nearrow \swarrow {\rm{ }}\overrightarrow {{I_2}B} \end{array} \right.\).

Vậy \(P = 2\sqrt 6 .4 = 8\sqrt 6 \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 (mét) so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật \[v\left( t \right) = 10t - {t^2},\] trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, \[v\left( t \right)\] được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là

Xem đáp án » 05/07/2022 32,414

Câu 2:

Tập nghiệm của bất phương trình \[{3^{2x - 1}} > 27\] là:

Xem đáp án » 05/07/2022 3,186

Câu 3:

Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10;10} \right]\] để bất phương trình sau nghiệm đúng \[\forall x \in \mathbb{R}:{\left( {6 + 2\sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {3 - \sqrt 7 } \right)^x} - \left( {m + 1} \right){2^x} \ge 0\]?

Xem đáp án » 05/07/2022 3,162

Câu 4:

Họ nguyên hàm của hàm số \[f\left( x \right) = x\left( {1 + 2\sin x} \right)\]

Xem đáp án » 05/07/2022 2,025

Câu 5:

Giá trị nhỏ nhất của hàm số \[y = \frac{1}{4}{x^4} + {x^3} - 2{x^2}\] trên đoạn \[\left[ { - 3;3} \right]\] bằng

Xem đáp án » 05/07/2022 1,895

Câu 6:

Hàm số \[y = {\log _2}\left( {{x^2} - 2x} \right)\] đồng biến trên

Xem đáp án » 05/07/2022 1,807

Câu 7:

Cho a là số thực dương khác 1. Tính \[P = {\log _{{a^2}}}a\].

Xem đáp án » 05/07/2022 1,723
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua