Câu hỏi:

05/07/2022 183

Cho hàm số f(x), \[y = f\left[ {f\left( {2x - 3} \right)} \right]\] \[y = f\left( {{x^3} + x + 2} \right)\] lần lượt có các đồ thị \[{C_1},{C_2},{C_3}.\] Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của \[{C_1}\]\[y = x + 3\], phương trình tiếp tuyến tại điểm có hoành độ bằng 2 của \[{C_2}\]\[y = 8x + 5.\] Viết phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của đồ thị \[{C_3}.\]

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có: \(y = f\left[ {f\left( {2{\rm{x}} - 3} \right)} \right] \Rightarrow y' = 2f'\left( {2{\rm{x}} - 3} \right).f'\left[ {f\left( {2x - 3} \right)} \right]\)

\(y = f\left( {{x^3} + x + 2} \right) \Rightarrow y' = \left( {3{{\rm{x}}^2} + 1} \right)f'\left( {{x^3} + x + 2} \right)\)

Phương trình tiếp tuyến của \(\left( {{C_1}} \right)\) tại điểm có hoành độ \(x = 1\) là: \(y = f'\left( 1 \right)\left( {x - 1} \right) + f\left( 1 \right) = x + 3\)

\( \Leftrightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 1\\ - f'\left( 1 \right) + f\left( 1 \right) = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 1\\f\left( 1 \right) = 4\end{array} \right.\)

Phương trình tiếp tuyến của \(\left( {{C_2}} \right)\) tại điểm có hoành độ \(x = 2\) là:

\(y = 2f'\left( 1 \right).f'\left[ {f\left( 1 \right)} \right]\left( {x - 2} \right) + f\left[ {f\left( 1 \right)} \right] = 2f'\left( 4 \right)\left( {x - 2} \right) + f\left( 4 \right) = 8x + 5\)

\( \Leftrightarrow \left\{ \begin{array}{l}2f'\left( 4 \right) = 8\\ - 4f'\left( 4 \right) + f\left( 4 \right) = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}f'\left( 4 \right) = 4\\f\left( 4 \right) = 21\end{array} \right.\)

Phương trình tiếp tuyến của \(\left( {{C_3}} \right)\) tại điểm có hoành độ \[{\rm{x}} = 1\] là:

\(y = 4f\left( 4 \right)\left( {x - 1} \right) + f\left( 4 \right) = 16\left( {x - 1} \right) + 21 = 16{\rm{x}} + 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 (mét) so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật \[v\left( t \right) = 10t - {t^2},\] trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, \[v\left( t \right)\] được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là

Xem đáp án » 05/07/2022 16,289

Câu 2:

Tập nghiệm của bất phương trình \[{3^{2x - 1}} > 27\] là:

Xem đáp án » 05/07/2022 2,405

Câu 3:

Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10;10} \right]\] để bất phương trình sau nghiệm đúng \[\forall x \in \mathbb{R}:{\left( {6 + 2\sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {3 - \sqrt 7 } \right)^x} - \left( {m + 1} \right){2^x} \ge 0\]?

Xem đáp án » 05/07/2022 2,139

Câu 4:

Giá trị nhỏ nhất của hàm số \[y = \frac{1}{4}{x^4} + {x^3} - 2{x^2}\] trên đoạn \[\left[ { - 3;3} \right]\] bằng

Xem đáp án » 05/07/2022 1,787

Câu 5:

Họ nguyên hàm của hàm số \[f\left( x \right) = x\left( {1 + 2\sin x} \right)\]

Xem đáp án » 05/07/2022 1,615

Câu 6:

Hàm số \[y = {\log _2}\left( {{x^2} - 2x} \right)\] đồng biến trên

Xem đáp án » 05/07/2022 1,541

Câu 7:

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây?

Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây (ảnh 1)

Xem đáp án » 05/07/2022 1,535

Bình luận


Bình luận