Câu hỏi:

05/07/2022 254 Lưu

Cho hàm số f(x), \[y = f\left[ {f\left( {2x - 3} \right)} \right]\] \[y = f\left( {{x^3} + x + 2} \right)\] lần lượt có các đồ thị \[{C_1},{C_2},{C_3}.\] Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của \[{C_1}\]\[y = x + 3\], phương trình tiếp tuyến tại điểm có hoành độ bằng 2 của \[{C_2}\]\[y = 8x + 5.\] Viết phương trình tiếp tuyến tại điểm có hoành độ bằng 1 của đồ thị \[{C_3}.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có: \(y = f\left[ {f\left( {2{\rm{x}} - 3} \right)} \right] \Rightarrow y' = 2f'\left( {2{\rm{x}} - 3} \right).f'\left[ {f\left( {2x - 3} \right)} \right]\)

\(y = f\left( {{x^3} + x + 2} \right) \Rightarrow y' = \left( {3{{\rm{x}}^2} + 1} \right)f'\left( {{x^3} + x + 2} \right)\)

Phương trình tiếp tuyến của \(\left( {{C_1}} \right)\) tại điểm có hoành độ \(x = 1\) là: \(y = f'\left( 1 \right)\left( {x - 1} \right) + f\left( 1 \right) = x + 3\)

\( \Leftrightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 1\\ - f'\left( 1 \right) + f\left( 1 \right) = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 1\\f\left( 1 \right) = 4\end{array} \right.\)

Phương trình tiếp tuyến của \(\left( {{C_2}} \right)\) tại điểm có hoành độ \(x = 2\) là:

\(y = 2f'\left( 1 \right).f'\left[ {f\left( 1 \right)} \right]\left( {x - 2} \right) + f\left[ {f\left( 1 \right)} \right] = 2f'\left( 4 \right)\left( {x - 2} \right) + f\left( 4 \right) = 8x + 5\)

\( \Leftrightarrow \left\{ \begin{array}{l}2f'\left( 4 \right) = 8\\ - 4f'\left( 4 \right) + f\left( 4 \right) = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}f'\left( 4 \right) = 4\\f\left( 4 \right) = 21\end{array} \right.\)

Phương trình tiếp tuyến của \(\left( {{C_3}} \right)\) tại điểm có hoành độ \[{\rm{x}} = 1\] là:

\(y = 4f\left( 4 \right)\left( {x - 1} \right) + f\left( 4 \right) = 16\left( {x - 1} \right) + 21 = 16{\rm{x}} + 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Khi bắt đầu tiếp đất vật chuyển động được quảng đường là \(s = 162m\).

Ta có: \(s = \int\limits_0^t {\left( {10t - {t^2}} \right)dt} = \left. {\left( {5{t^2} - \frac{{{t^3}}}{3}} \right)} \right|_0^t = 5{t^2} - \frac{{{t^3}}}{3}\) (trong đó t là thời điểm vật tiếp đất).

Cho \(5{t^2} - \frac{{{t^3}}}{3} = 162 \Rightarrow t = 9\) (Do \(v\left( t \right) = 10t - {t^2} \Rightarrow 0 \le t \le 10\)).

Khi đó vận tốc của vật là: \(v\left( 9 \right) = 10.9 - {9^2} = 9{\rm{ }}\left( {{\rm{m/p}}} \right)\).

Câu 2

Lời giải

Đáp án D

\({3^{2{\rm{x}} - 1}} > 27 \Leftrightarrow {3^{2{\rm{x}} - 1}} > {3^3} \Leftrightarrow 2{\rm{x}} - 1 > 3 \Leftrightarrow x > 2\)

Vậy tập nghiệm của bất phương trình là \(\left( {2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP