Câu hỏi:
08/07/2022 503
Bất phương trình: \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\] có bao nhiêu nghiệm nguyên dương?
Bất phương trình: \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\] có bao nhiêu nghiệm nguyên dương?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có điều kiện: x2 – 5 ≥ 0\[ \Leftrightarrow \left[ \begin{array}{l}x \le - \sqrt 5 \,\\x \ge \sqrt 5 \end{array} \right.\].
Vậy \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\]\[ \Leftrightarrow \] x2 – 3x – 4 < 0.
Xét x2 – 3x – 4 = 0 \[ \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 4\end{array} \right.\]
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có x2 – 3x – 4 < 0 \[ \Leftrightarrow \] – 1 < x < 4
Kết hợp với điều kiện ta được: \[x \in \left( {\sqrt 5 ;4} \right)\]. Suy ra nghiệm nguyên dương của bất phương trình đã cho là: x = 3.
Vậy bất phương trình có 1 nghiệm nguyên dương.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có: f(x) = x2 + 4x + m – 5 luôn luôn dương \[ \Leftrightarrow \] x2 + 4x + m – 5 > 0 với mọi x \[ \in \]ℝ
\[ \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {2^2} - (m - 5) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\m > 9\end{array} \right.\].
Vậy đáp án đúng là C.
Lời giải
Đáp án đúng là: C
Ta có f(x) > 0 với
Xét tam thức bậc hai f(m) = m2 – 6m – 27, có ∆’ = 9 – (-27) = 36 > 0. Do đó f(m) có hai nghiệm phân biệt là m = -3 và m = 9.
Ta có bảng xét dấu
Dựa vào bảng xét dấu để ∆ < 0 thì – 3 < m < 9.
Vậy đáp án đúng là C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.