Câu hỏi:
08/07/2022 203Bất phương trình: \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\] có bao nhiêu nghiệm nguyên dương?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có điều kiện: x2 – 5 ≥ 0\[ \Leftrightarrow \left[ \begin{array}{l}x \le - \sqrt 5 \,\\x \ge \sqrt 5 \end{array} \right.\].
Vậy \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\]\[ \Leftrightarrow \] x2 – 3x – 4 < 0.
Xét x2 – 3x – 4 = 0 \[ \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 4\end{array} \right.\]
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có x2 – 3x – 4 < 0 \[ \Leftrightarrow \] – 1 < x < 4
Kết hợp với điều kiện ta được: \[x \in \left( {\sqrt 5 ;4} \right)\]. Suy ra nghiệm nguyên dương của bất phương trình đã cho là: x = 3.
Vậy bất phương trình có 1 nghiệm nguyên dương.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Các giá trị m làm cho biểu thức f(x) = x2 + 4x + m – 5 luôn dương là:
Câu 2:
Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng \(\forall x \ge 3\)?
Câu 5:
Cho hàm số f(x) = mx2 – 2mx + m + 1. Giá trị của m để f(x) > 0, \(\forall x \in \mathbb{R}\).
Câu 6:
Phương trình x2 – 2(m – 1)x + m – 3 = 0 có hai nghiệm trái dấu nhau khi và chỉ khi
về câu hỏi!