Câu hỏi:

07/07/2022 5,451

Cho hàm số f(x) = mx2 – 2mx + m + 1. Giá trị của m để f(x) > 0, \(\forall x \in \mathbb{R}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

TH1. m = 0. Khi đó: f(x) = 1 > 0\(\forall x \in \mathbb{R}\).

TH2. m ≠ 0. Khi đó:

f(x) = mx2 – 2mx + m + 1 > 0 \(\forall x \in \mathbb{R}\)\( \Leftrightarrow \left\{ \begin{array}{l}a = m > 0\\\Delta ' = {m^2} - m\left( {m + 1} \right) < 0\end{array} \right.\).\( \Leftrightarrow \left\{ \begin{array}{l}a = m > 0\\m > 0\end{array} \right. \Leftrightarrow m > 0\)

Vậy m ≥ 0 thỏa mãn bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Ta có: f(x) = x2 + 4x + m – 5 luôn luôn dương \[ \Leftrightarrow \] x2 + 4x + m – 5 > 0 với mọi x \[ \in \]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {2^2} - (m - 5) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\m > 9\end{array} \right.\].

Vậy đáp án đúng là C.

Câu 2

Lời giải

Đáp án đúng là: C

Ta có f(x) > 0 với a=1>0Δ=(m+1)2-4.(2m+7)<0a=1>0Δ=m26m27<0

Xét tam thức bậc hai f(m) = m2 – 6m – 27, có ∆’ = 9 – (-27) = 36 > 0. Do đó f(m) có hai nghiệm phân biệt là m = -3 và m = 9.

Ta có bảng xét dấu

Để f(x) = x2 + (m + 1)x +2m + 7 > 0 với mọi x thì (ảnh 1)

Dựa vào bảng xét dấu để ∆ < 0 thì – 3 < m < 9.

Vậy đáp án đúng là C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP