Câu hỏi:
08/07/2022 142Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Khoảng cách từ điểm M đến đường thẳng ∆ là: \[d\left( {M,\Delta } \right) = \,\frac{{\left| {\left. {a{x_0} + b{y_0} + c} \right|} \right.}}{{\sqrt {{a^2} + {b^2}} }}.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}:\left\{ \begin{array}{l}x = - 1 + t\\y = - 2 - 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 4t'\end{array} \right.\].
Câu 2:
Góc tạo bởi giữa hai đường thẳng \[{d_1}\]: 7x - 3y + 6 = 0 và \[{d_2}\]: 2x - 5y có giá trị?
Câu 3:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 4t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 2t'\end{array} \right.\].
Câu 4:
Tính góc tạo bởi giữa hai đường thẳng:
\[{d_1}\]: 2x - y - 10 = 0 và \[{d_2}\]: x - 3y + 9 = 0
Câu 5:
Xét vị trí tương đối của hai đường thẳng \[{d_1}:\frac{x}{3} - \frac{y}{4} = 1\] và \[{d_2}\]: 3x + 4y - 10 = 0.
Câu 6:
Khoảng cách từ điểm M(-1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:
Câu 7:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề thi Học kì 1 Toán 10 - Bộ sách Kết nối tri thức - Đề 01
28 câu Trắc nghiệm Mệnh đề có đáp án
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
về câu hỏi!