Câu hỏi:
08/07/2022 2,297
Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng:
Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng:
Quảng cáo
Trả lời:
Đáp án đúng là: C
+) Giao điểm của hai đường thẳng:
Ta có: \[\left\{ \begin{array}{l}x - 3y + 4 = 0\\2x + 3y - 1 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 1\end{array} \right.\], vậy điểm A (-1; 1) là giao điểm của hai đường thẳng
+) Khoảng cách từ A đến \[\Delta \]: 3x + y + 4 = 0:
\[d\left( {A;\Delta } \right) = \frac{{\left| {3.( - 1) + 1.1 + 4} \right|}}{{\sqrt {9 + 1} }} = \frac{2}{{\sqrt {10} }} = \frac{{\sqrt {10} }}{5}\].
Vậy khoảng cách giữa giao điểm của hai đường thẳng đến đường thẳng ∆ là \(\frac{{\sqrt {10} }}{5}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có:
\[{d_1}:\left\{ \begin{array}{l}x = - 1 + t\\y = - 2 - 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 4t'\end{array} \right.\].
Xét hệ phương trình: \[\left\{ \begin{array}{l} - 1 + t = 2 - 2t'\\ - 2 - 2t = - 8 + 4t'\end{array} \right.\]\[ \Leftrightarrow \]\[\left\{ \begin{array}{l}t + 2t' = 3\\ - 2t - 4t' = - 6\end{array} \right.\]
\[ \Leftrightarrow t + 2t' = 3\] như vậy phương trình có vô số nghiệm, suy ra hai đường thẳng trùng nhau.
Lời giải
Đáp án đúng là: A
Ta có:
\(\left\{ \begin{array}{l}{d_1}:7x - 3y + 6 = 0 \Rightarrow {{\vec n}_1} = \left( {7; - 3} \right)\\{d_2}:2x - 5y - 4 = 0 \Rightarrow {{\vec n}_2} = \left( {2; - 5} \right)\end{array} \right.\) \({\vec n_1}\); \({\vec n_2}\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1}\); \({d_2}\). Áp dụng công thức góc giữa hai đường thẳng:
\(\cos \varphi = \frac{{\left| {14 + 15} \right|}}{{\sqrt {49 + 9} .\sqrt {4 + 25} }} = \frac{1}{{\sqrt 2 }}\)\( \Rightarrow \varphi = \frac{\pi }{4}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.