Câu hỏi:

12/07/2022 304

Cho hàm số bậc bốn f(x) thỏa mãn f0=18 và đồ thị y = f'(x) (như hình vẽ bên dưới).

Cho hàm số bậc bốn f(x) thỏa mãn f(0) = 1/8 và đồ thị y = f'(x) (ảnh 1)

Xét hàm số f(x) thỏa mãn g"x=2021f"xfx+f'x2f"x g'0=20138. Tìm số nghiệm của phương trình g'(x) = 0.              

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B.

Ta có: g"x=2021f'xfx'f"x=2021f'xfxf'x'. 1

Lấy nguyên hàm hai vế của (1) ta được:

g"xdx=2021f'xfxf'x'dx

g'x=2021f'xfxf'x+C. 2

Từ đồ thị ta có: f'(0) = 1

Thay x = 0 vào (2) ta được:

g'0=2021.f'0.f0f'0+C20138=2021.1.181+CC=0.

Từ đó suy ra: g'x=2021.f'x.fx12021.

g'x=0f'x=0      3fx=12021 4.

 

* Giải phương trình (3)

Đồ thị hàm số y = f'(x) cắt trục Ox tại 3 điểm có hoành độ lần lượt là x = a, x = b, x = c với 2<a<1,0<b<1,1<c<2.

Ta có: 3x=ax=bx=c.

* Giải phương trình (4)

- Do y = f(x) là hàm số bậc bốn nên y = f'(x) là hàm số bậc 3, giả sử f'x=ax3+bx2+cx+d. Từ đồ thị hàm số y = f'(x) suy ra:

f'0=1f'1=3f'1=1f"1=0d=1a+bc+1=3a+b+c+1=13a2b+c=0a=1b=0c=3d=1

 

f'x=x33x+1

f'xdx=x33x+1dx

fx=14x432x2+x+C' 5.

Thay x = 0 vào (5) ta được: f0=C'C'=18fx=14x432x2+x+18.

Dễ thấy f1=18.

Bảng biến thiến:

Cho hàm số bậc bốn f(x) thỏa mãn f(0) = 1/8 và đồ thị y = f'(x) (ảnh 2)

Từ bảng biến thiên suy ra phương trình fx=12021 có 4 nghiệm phân biệt khác a, b, c.

Vậy phương trình g'(x) = 0 có 7 nghiệm phân biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C.

Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = 2a, đường thẳng AB' tạo (ảnh 1)

Gọi M là trung điểm BC

ΔABC đều nên AMBC. AMBB' (do ABC.A'B'C' là hình lăng trụ tam giác đều)

Suy ra AMBB'C'C.

Khi đó B'M là hình chiếu của AB' lên BB'C'C

Suy ra AB',BB'C'C^=AB',B'M^=AB'M^=300.

ΔABC đều nên AM=AB32=a3.

ΔAB'M vuông tại M có sinAB'M^=AMAB'AB'=AMsin300=a312=2a3.

ΔABB' vuông tại B có BB'=AB'2AB2=2a2.

Thể tích của khối lăng trụ đã cho là V=BB'.SABC=2a2.2a234=2a36 (đvtt).

Lời giải

Chọn B.

Gọi M là trung điểm ABM1;1;3,AB=6;2;4=23;1;2.

Mặt phẳng trung trực của đoạn thẳng AB đi qua M(1; 1; 3) và có vectơ pháp tuyến n=3;1;2.

Phương trình mặt phẳng trung trực của đoạn thẳng AB là 3x+y+2z10=0.

Câu 3

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B với AC=a5,BC=2a,BB'=a3 (tham khảo hình vẽ). Tính góc giữa đường thẳng A'B và mặt phẳng (ABC)

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tập nghiệm của phương trình log2x2=4 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Đồ thị hàm số y=x2x+1x+1 cắt trục tung tại điểm có tung độ bằng 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tổng hai nghiệm của phương trình log32x6log3x+8=0 bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay