Câu hỏi:

13/07/2024 5,143

Cho hai biểu thức A=x+x22x  và B=2xx+1+3x22x2+1x2x2

a) Tính giá trị của A khi |2x – 3| = 1.

b) Tìm điều kiện xác định và rút gọn biểu thức B.

c) Tìm số nguyên x để P = A.B đạt giá trị lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)  A=x+x22x

Điều kiện xác định của biểu thức A là: 2 – x ≠ 0 Û x ≠ 2.

Ta có |2x – 3| = 1

Trường hợp 1: 2x – 3 ≥ 0 thì 2x – 3 = 1

Với 2x – 3 ≥ 0 Û 2x ≥ 3 Û x ≥ 32  thì |2x – 3| = 2x – 3. Khi đó:

2x – 3 = 1 Û 2x = 4 Û x = 2 (không thõa mãn)

Trường hợp 2: 2x – 3 ≤ 0 Û 2x ≤ 3 Û x ≤ 32  thì |2x – 3| = – 2x + 3. Khi đó:

– 2x + 3 = 1 Û 2x = 2 Û x = 1 (thõa mãn)

Thay x = 1 (TMĐK) vào A=x+x22x  ta được:

A=1+1221=1+11=2.

Vậy khi |2x – 3| = 1 thì A = 2.

b) Điều kiện xác định của biểu thức B:

x+10x20x2x20x+10x20x2+x2x20x+10x20x+1x20x+10x20x1x2

Khi đó, ta có:

B=2xx+1+3x22x2+1x2x2=2xx2x+1x2+3x+1x2x+12x2+1x2x+1=2x24xx+1x2+3x+3x2x+12x2+1x2x+1=2x24x+3x+32x2+1x+1x2=2x24x+3x+32x21x+1x2=2x22x24x+3x+31x+1x2=x+2x+1x2=x2x+1x2=1x+1

Vậy B=1x+1 .

c) Ta có P = A.B nên:

P=x+x22x.1x+1=xx+12x.1x+1=x2x=xx2=1+2x2

Để biểu thức P=1+2x2  đạt giá trị lớn nhất thì 2x2  đạt giá trị lớn nhất.

Suy ra (x – 2) đạt giá trị nhỏ nhất.

Xét x – 2 < 0 hay x < 2 thì 2x2  < 0.

Do đó không xác định được giá trị nhỏ nhất trong trường hợp này.

Xét x – 2 > 0 hay x > 2 thì 2x2  > 0.

Ta thấy: x là số nguyên lớn hơn 2 mà (x – 2) đạt giá trị nhỏ nhất nên x = 3.

Vậy để P = A . B đạt giá trị lớn nhất thì x = 3.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = 5 cm; BC = 8 cm. Trên cạnh AB lấy điểm D sao cho AD = 2 cm. (ảnh 1)

a)Áp dụng định lý Ta-let trong ∆ABC có DE // BC, ta có:

ADAB=DEBC

DE=AD.BCAB=2.85=3,2 (cm).

b) Theo đề ta có DE // BC hay DF // BC và BD // CF.

Suy ra tứ giác BDFC là hình bình hành nên ta có FC = BD.

Mà BD = AB – AD = 5 – 2 = 3 (cm).

Suy ra FC = 3 cm.

Ta có CF // AD (gt), áp dụng hệ quả của định lý Ta-let, ta có:

IFIB=FCAD=35

c) Áp dụng hệ quả của định lý Ta – let với CF // AD, ta có:

IFIB=ICIA (1)

Áp dụng hệ quả định lý Ta – let với EF // BC, ta có:

IFIB=IEIC (2)

Từ (1) và (2) suy ra ICIA=IEIC=IFIB  nên IC2 = IE.IA.

Lời giải

Gọi x (km) là độ dài quãng đường AB (x > 0).

Một người đi xe máy từ A đến B với vận tốc 30 km/h nên thời gian người đó từ A đến B là x30  (h).

Người đó đi B về A với vận tốc 40 km/h nên thời gian để đi từ B về A là x40  (h).

Thời gian người đó nghỉ là: 30 phút = 12  h.

Đổi 5 giờ 10 phút = 316  giờ.

Theo đề bài, tổng thời gian người đó đi, quay về và nghỉ là 5 giờ 10 phút nên ta có phương trình:

x30+x40+12=316x.430.4+x.340.3+1.602.60=31.206.204x120+3x120+60120=620120

Û 4x + 3x + 60 = 620

Û 7x = 620 – 60

Û 7x = 560

Û x = 560 : 7

Û x = 80 (thỏa mãn điều kiện)

 Vậy độ dài quãng đường AB là 80 km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay