Câu hỏi:
24/07/2022 345Gọi (H) là hình phẳng giới hạn bởi đồ thị (P) của hàm số \[y = 6x - {x^2}\] và trục hoành. Hai đường thẳng \[y = m,y = n\] chia hình (H) thành ba phần có diện tích bằng nhau. Tính \[P = {\left( {9 - m} \right)^3} + {\left( {9 - n} \right)^3}.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Diện tích hình phẳng giới hạn bởi các đường \[y = 6x - {x^2};y = 0\] là \[\int\limits_0^6 {\left| {6x - {x^2}} \right|dx} = 36\].
Ta có \[{x^2} - 6x + m = 0 \Leftrightarrow {\left( {x - 3} \right)^2} = 9 - m \Rightarrow x = 3 \pm \sqrt {9 - m} \;\left( {0 < m < 9} \right)\].
Diện tích hình phẳng giới hạn bởi các đường \[y = 6x - {x^2};y = m\].
\[\frac{2}{3}.36 = \int\limits_{3 - \sqrt {9 - m} }^{3 + \sqrt {9 - m} } {\left( {6x - {x^2} - m} \right)dx} \Rightarrow 24.3 = \left( {9{x^2} - {x^3} - 3mx} \right)\left| \begin{array}{l}^{3 + \sqrt {9 - m} }\\_{3 - \sqrt {9 - m} }\end{array} \right.\]
Đặt \[\sqrt {9 - m} = a\]
\[\begin{array}{l} \Rightarrow 72 = 9\left[ {{{\left( {3 + a} \right)}^2} - {{\left( {3 - a} \right)}^2}} \right] - \left[ {{{\left( {3 + a} \right)}^3} - {{\left( {3 - a} \right)}^3}} \right] - 3\left( {9 - {a^2}} \right).2a\\\;\;\;\;\;\;\;\; = 9.12a - \left[ {{{\left( {a + 3} \right)}^3} + {{\left( {a - 3} \right)}^3}} \right] - 6a\left( {9 - {a^2}} \right) = 54a + 6{a^3} - \left( {2{a^3} + 54a} \right) = 4{a^3}\\ \Rightarrow {a^3} = 18 \Rightarrow {\left( {\sqrt {9 - m} } \right)^3} = 18 \Rightarrow {\left( {9 - m} \right)^3} = 324.\end{array}\]
Diện tích hình phẳng giới hạn bởi các đường \[y = 6x - {x^2};y = n\].
\[\frac{1}{3}.36 = \int\limits_{3 - \sqrt {9 - n} }^{3 + \sqrt {9 - n} } {\left( {6x - {x^2} - n} \right)dx} \Rightarrow 12.3 = \left( {9{x^2} - {x^3} - 3nx} \right)\left| \begin{array}{l}^{3 + \sqrt {9 - n} }\\_{3 - \sqrt {9 - n} }\end{array} \right.\]
Tương tự như trên \[ \Rightarrow 36 = 4{\left( {\sqrt {9 - n} } \right)^3} \Rightarrow {\left( {9 - n} \right)^3} = 81.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính thể tích của khối lập phương \[ABCD.A'B'C'D'\], biết \[AC' = 2a\sqrt 3 .\]
Câu 2:
Người ta muốn thiết kế một bể cá bằng kính không có nắp với thể tích \[72d{m^3}\] và chiều cao là \[3dm.\] Một vách ngăn (cùng bằng kính) ở giữa, chia bể cá thành hai ngăn, với các kích thước a, b (đơn vị dm) như hình vẽ. Tính a, b để bể cá tốn ít nguyên liệu nhất (tính cả tấm kính ở giữa), coi bề dày các tấm kính như nhau và không ảnh hưởng đến thể tích của bể.
Câu 3:
Tính môđun của số phức z thỏa mãn \[z\left( {1 - i} \right) + 2i = 1.\]
Câu 4:
Tính đạo hàm của hàm số \[y = {\log _{\frac{3}{4}}}\left| x \right|.\]
Câu 5:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x + 2y - 3z + 3 = 0.\] Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Câu 6:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \sin 5x\] là
Câu 7:
Cho a và b là hai số thực dương tùy ý. Mệnh đề nào dưới đây là đúng?
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
về câu hỏi!