Trong không gian Oxyz, cho hai đường thẳng
\[{d_1}:\frac{{x - 2}}{3} = \frac{{y + 3}}{1} = \frac{{z - 4}}{{ - 2}},{\rm{ }}{d_2}:\frac{{x - 4}}{3} = \frac{{y + 1}}{1} = \frac{z}{{ - 2}}.\] Phương trình nào sau đây là phương trình đường thẳng thuộc mặt phẳng chứa \[{d_1}\] và \[{d_2}\], đồng thời cách đều hai đường thẳng đó?
Quảng cáo
Trả lời:
Đáp án A
Đường thẳng \[{d_1}\] qua \[A\left( {2; - 3;4} \right)\] và nhận \[\overrightarrow {{u_1}} = \left( {3;1; - 2} \right)\] là một VTCP.
Đường thẳng \[{d_2}\] qua \[B\left( {4; - 1;0} \right)\] và nhận \[\overrightarrow {{u_2}} = \left( {3;1; - 2} \right)\] là một VTCP.
Ta có \[\left\{ \begin{array}{l}A \notin {d_2}\\\overrightarrow {{u_1}} = \overrightarrow {{u_2}} \end{array} \right. \Rightarrow {d_1}//{d_2}\].
Gọi d là đường thẳng cần tìm.
Bài ra d thuộc mặt phẳng chứa \[{d_1}\] và \[{d_2}\], đồng thời cách đều \[{d_1}\] và \[{d_2}\].
Ta có \[A\left( {2; - 3;4} \right) \in {d_1}\] và \[B\left( {4; - 1;0} \right) \in {d_2} \Rightarrow \] trung điểm M của AB sẽ thuộc d.
Điểm \[M\left( {\frac{{2 + 4}}{2};\frac{{ - 3 - 1}}{2};\frac{{4 + 0}}{2}} \right) \Rightarrow M\left( {3; - 2;2} \right) \Rightarrow d\] qua \[M\left( {3; - 2;2} \right)\].
Lại có \[C\left( {5; - 2;2} \right) \in {d_1}\] và \[D\left( {7;0; - 2} \right) \in {d_2} \Rightarrow \] trung điểm N của CD sẽ thuộc d.
Điểm \[N\left( {\frac{{5 + 7}}{2};\frac{{ - 2 + 0}}{2};\frac{{2 - 2}}{2}} \right) \Rightarrow N\left( {6; - 1;0} \right) \Rightarrow d\] qua \[N\left( {6; - 1;0} \right)\].
Đường thẳng d qua \[M\left( {3; - 2;2} \right)\] và nhận \[\overrightarrow {MN} = \left( {3;1; - 2} \right)\] là một VTCP.
\[ \Rightarrow d:\frac{{x - 3}}{3} = \frac{{y + 2}}{1} = \frac{{z - 2}}{{ - 2}}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Thể tích của bể là \[V = 3ab = 72 \Rightarrow ab = 24\].
Để bể cá tốn ít nguyên liệu nhất thì tổng diện tích S của bốn mặt bên, mặt đáy, tấm kính ở giữa phải nhỏ nhất.
Ta có \[S = 2.3a + 2.3b + ab + 3a = ab + 9a + 6b \ge ab + 2\sqrt {9a.6b} = 24 + 2\sqrt {54.24} = 96\].
Dấu “=” xảy ra \[ \Leftrightarrow \left\{ \begin{array}{l}ab = 24\\9a = 6b > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 6\end{array} \right.\].
Lời giải
Đáp án D

Ta có \[AC{'^2} = A{C^2} + CC{'^2} = A{B^2} + B{C^2} + CC{'^2} = 3A{B^2}\].
\[\begin{array}{l} \to AB\sqrt 3 = AC' = 2a\sqrt 3 \Rightarrow AB = 2a.\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = A{B^3} = 8{a^3}.\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.