Câu hỏi:

11/07/2024 2,107

Cho tam giác ABC cân tại A có đường cao AH (H thuộc BC). Gọi M là trung điểm của đoạn thẳng AB. Gọi E là điểm đối xứng với H qua M.

Trên tia đối của tia HA lấy điểm F. Kẻ HKFC  (K thuộc FC). Gọi I, Q lần lượt là trung điểm của HK, KC. Chứng minh rằng: BKFI .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Sử dụng tính chất đường trung bình của tam giác và quan hệ từ vuông góc đến song song.

Cách giải:

Media VietJack

Xét tam giác HKCI, Q lần lượt là trung điểm cạnh HK, CQ nên IQ là đường trung bình HKC

IQ // HC (tính chất)

Mà HCHFIQHF

Xét tam giác HFOIQHFcmt, HKFQgt  IHK  I là trực tâm của HFQ

FIHQ

Xét tam giác BCKH, Q lần lượt là trung điểm cạnh BC, CQ nên HQ là đường trung bình BCK

HQ // BK mà FIHQcmt

BKFI  (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

Sử dụng hằng đẳng thức  sau đó rút gọn vế trái đưa về dạng tìm x thường gặp.

Cách giải:

x+32x2=45

x2+6x+9x2=456x=36x=6

Vậy x=6 .

Lời giải

Phương pháp:

Đặt nhân tử chung rồi tách hạng tử để nhóm các hạng tử thích hợp.

Cách giải:

x37x2+10x

=xx27x+10=xx22x5x+10=xxx25x2=xx5x2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP