Câu hỏi:

26/07/2022 679

Giá trị nhỏ nhất của biểu thức F = – x + y trên miền nghiệm của hệ bất phương trình 2x+y2x+2y4x+y5.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là B

Bài toán đã cho trở thành tìm nghiệm (x; y) của hệ bất phương trình 2x+y2x+2y4x+y5 sao cho biểu thức F = – x + y đạt giá trị nhỏ nhất.

Trước hết ta xác định miền nghiệm của hệ bất phương trình đã cho:

Ta có ba đường thẳng: d1: – 2x + y = 2; d2: – x + 2y = 4 và d3: x + y = 5.

+) Lấy O(0; 0) có – 2.0 + 0 = 0 < 2. Do đó miền nghiệm của bất phương trình – 2x + y ≤ 2 là nửa mặt phẳng chứa điểm O(0; 0) có bờ là đường thẳng d1.

+) Lấy O(0; 0) có – 0 + 2.0 = 0 < 4. Do đó miền nghiệm của bất phương trình – x + 2y ≥ 4 là nửa mặt phẳng không chứa điểm O(0; 0) có bờ là đường thẳng d2.

+) Lấy O(0; 0) có 0 + 0 = 0 < 5. Do đó miền nghiệm của bất phương trình x + y ≤ 5 là nửa mặt phẳng chứa điểm O(0; 0) và có bờ là đường thẳng d3.

Miền nghiệm của hệ bất phương trình là miền tam giác ABC với A(0; 2), B(1; 4) và C(2; 3) như trong hình vẽ sau:

Giá trị nhỏ nhất của biểu thức F = – x + y trên miền nghiệm của hệ bất phương trình (ảnh 1)

Ta đã chứng minh được biểu thức F = – x + y có giá trị nhỏ nhất tại các đỉnh của tam giác ABC.

Tại điểm A, với x = 0, y = 2 thì F = – 0 + 2 = 2.

Tại điểm B, với x = 1, y = 4 thì F = – 1 + 4 = 3.

Tại điểm C, với x = 2, y = 3 thì F = – 2 + 3 = 1.

Vậy giá trị nhỏ nhất của biểu thức F là 1 khi x = 2 và y = 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cặp số nào sau đây là nghiệm của hệ bất phương trình x2y<0x+3y>2x+y<3.

Xem đáp án » 26/07/2022 3,325

Câu 2:

a) Biểu diễn miền nghiệm của hệ bất phương trình: x+y53x+2y12x               1              y0.

Xem đáp án » 13/07/2024 2,802

Câu 3:

Biểu diễn miền nghiệm của hệ bất phương trình sau:

a) x2y3x+y3;

Xem đáp án » 13/07/2024 2,796

Câu 4:

Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình:

Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình: (ảnh 1)

Xem đáp án » 26/07/2022 2,781

Câu 5:

b) Tìm x, y là nghiệm của hệ bất phương trình (III) sao cho F = 3x + 7y đạt giá trị lớn nhất, giá trị nhỏ nhất.

Xem đáp án » 13/07/2024 2,714

Câu 6:

b) x+y5x2y2x              1;

Xem đáp án » 13/07/2024 1,678

Câu 7:

Cặp số nào sau đây không là nghiệm của hệ bất phương trình x+y22x3y>2.

Xem đáp án » 26/07/2022 1,522

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store