Viết hệ bất phương trình bậc nhất hai ẩn có miền nghiệm là miền đa giác không bị gạch ở mỗi Hình 10a, 10b.
Viết hệ bất phương trình bậc nhất hai ẩn có miền nghiệm là miền đa giác không bị gạch ở mỗi Hình 10a, 10b.

Quảng cáo
Trả lời:

Xét Hình 10a):

Ta có: Đường thẳng d1 đi qua hai điểm O và A là trục tung Oy có phương trình x = 0.
Ta thấy điểm B thuộc miền nghiệm nằm bên phải trục tung nên điểm B thỏa mãn bất phương trình x ≥ 0 (1)
Đường thẳng d2 đi qua hai điểm O và B là trục hoành Ox có phương trình y = 0.
Ta thấy điểm B thuộc miền nghiệm nằm trên trục hoành nên điểm B thỏa mãn bất phương trình y ≥ 0 (2)
Đường thẳng d3 đi qua hai điểm A(0; 6) và B(3; 0) có phương trình là: .
Ta thấy điểm O(0; 0) có 2.0 + 0 = 0 < 6 thuộc miền nghiệm nên điểm O thỏa mãn bất phương trình 2x + y ≤ 6 (3).
Từ (1), (2) và (3) miền nghiệm tam giác OAB biểu diễn cho hệ bất phương trình: .
Xét Hình 10b):

Ta có: Đường thẳng d1 đi qua hai điểm A(0; 3) và B(9; 3) song song với trục hoành có phương trình y = 3.
Ta thấy điểm O thuộc miền nghiệm có 0 < 3 nên điểm O thỏa mãn bất phương trình y ≤ 3 (1)
Đường thẳng d2 đi qua hai điểm A(0; 3) và D(– 5; – 2) cắt hai trục tọa độ Ox và Oy lần lượt tại các điểm có tọa độ là (– 3; 0) và (0; 3) có phương trình là: .
Ta thấy điểm O thuộc miền nghiệm có 0 – 0 = 0 > – 3 nên điểm O thỏa mãn bất phương trình x – y ≥ – 3.
Đường thẳng d3 đi qua hai điểm B(9; 3) và C(4; – 2) song song với đường thẳng d2 có phương trình là: x – y = c.
Vì đường thẳng này đi qua B(9; 3) nên ta có: 9 – 3 = c hay c = 6.
Khi đó phương trình d3 là x – y = 6.
Ta thấy điểm O(0; 0) có 0 – 0 = 0 < 3 thuộc miền nghiệm nên điểm O thỏa mãn bất phương trình x – y ≤ 3 (3).
Đường thẳng d1 đi qua hai điểm C(4; – 2) và D(– 5; – 2) song song với trục hoành có phương trình y = – 2.
Ta thấy điểm O thuộc miền nghiệm có 0 > – 2 nên điểm O thỏa mãn bất phương trình y ≥ – 2 (4)
Từ (1), (2), (3) và (4) miền nghiệm của tứ giác ABCD biểu diễn cho hệ bất phương trình:
.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là B
Ta xét hệ phương trình:
+) Thay x = 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 1 – 2.0 < 0 ⇔ 1 < 0 (vô lí);
(2) ⇔ 1 + 3.0 > – 2 ⇔ 1 > – 2 (luôn đúng);
(3) ⇔ – 1 + 0 < 3 ⇔ – 1 < 3 (luôn đúng).
Do đó cặp số (1; 0) không là nghiệm của hệ bất phương trình đã cho.
+) Thay x = – 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ – 1 – 2.0 < 0 ⇔ – 1 < 0 (luôn đúng);
(2) ⇔ – 1 + 3.0 > – 2 ⇔ – 1 > – 2 (luôn đúng);
(3) ⇔ 1 + 0 < 3 ⇔ 1 < 3 (luôn đúng).
Do đó cặp số (– 1; 0) là nghiệm của hệ bất phương trình đã cho.
+) Thay x = – 2 và y = 3 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ – 2 – 2.3 < 0 ⇔ – 8 < 0 (luôn đúng);
(2) ⇔ – 2 + 3.3 > – 2 ⇔ 7 > – 2 (luôn đúng);
(3) ⇔ 2 + 3 < 3 ⇔ 5 < 3 (vô lí).
Do đó cặp số (– 2; 3) không là nghiệm của hệ bất phương trình đã cho.
+) Thay x = 0 và y = – 1 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 0 – 2.(– 1) < 0 ⇔ 2 < 0 (vô lí);
(2) ⇔ 0 + 3.(– 1) > – 2 ⇔ – 3 > – 2 (vô lí);
(3) ⇔ 0 + (– 1) < 3 ⇔ – 1 < 3 (luôn đúng).
Do đó cặp số (0; – 1) không là nghiệm của hệ bất phương trình đã cho.
Vậy (– 1; 0) là nghiệm của hệ phương trình đã cho.
Lời giải
a) Ta vẽ bốn đường thẳng:
d1: x + y = 5 là đường thẳng đi qua hai điểm có tọa độ (0; 5) và (5; 0);
d2: 3x + 2y = 12 là đường thẳng đi qua hai điểm có tọa độ (4; 0) và (0; 6);
d3: x = 1 là đường thẳng song song với trục tung và đi qua điểm (1; 0);
d4: y = 0 là trục hoành.
Ta xác định từng miền nghiệm của từng bất phương trình trong hệ, gạch đi các phần không thuộc miền nghiệm của mỗi bất phương trình.
Miền nghiệm của hệ bất phương trình là miền trong tứ giác ABCD với A(1; 0), B(1; 4), C(2; 3) và D(4; 0) như hình vẽ sau:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.