Câu hỏi:

13/07/2024 999

Viết hệ bất phương trình bậc nhất hai ẩn có miền nghiệm là miền đa giác không bị gạch ở mỗi Hình 10a, 10b.

Viết hệ bất phương trình bậc nhất hai ẩn có miền nghiệm là miền đa giác không bị gạch ở  (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét Hình 10a):

Viết hệ bất phương trình bậc nhất hai ẩn có miền nghiệm là miền đa giác không bị gạch ở  (ảnh 2)

Ta có: Đường thẳng d1 đi qua hai điểm O và A là trục tung Oy có phương trình x = 0.

Ta thấy điểm B thuộc miền nghiệm nằm bên phải trục tung nên điểm B thỏa mãn bất phương trình x ≥ 0 (1)

Đường thẳng d2 đi qua hai điểm O và B là trục hoành Ox có phương trình y = 0.

Ta thấy điểm B thuộc miền nghiệm nằm trên trục hoành nên điểm B thỏa mãn bất phương trình y ≥ 0 (2)

Đường thẳng d3 đi qua hai điểm A(0; 6) và B(3; 0) có phương trình là: x3+y6=12x+y=6.

Ta thấy điểm O(0; 0) có 2.0 + 0 = 0 < 6 thuộc miền nghiệm nên điểm O thỏa mãn bất phương trình 2x + y ≤ 6 (3).

Từ (1), (2) và (3) miền nghiệm tam giác OAB biểu diễn cho hệ bất phương trình: x0y02x+y6.

Xét Hình 10b):

Viết hệ bất phương trình bậc nhất hai ẩn có miền nghiệm là miền đa giác không bị gạch ở  (ảnh 3)

Ta có: Đường thẳng d1 đi qua hai điểm A(0; 3) và B(9; 3) song song với trục hoành có phương trình y = 3.

Ta thấy điểm O thuộc miền nghiệm có 0 < 3 nên điểm O thỏa mãn bất phương trình y ≤ 3 (1)

Đường thẳng d2 đi qua hai điểm A(0; 3) và D(– 5; – 2) cắt hai trục tọa độ Ox và Oy lần lượt tại các điểm có tọa độ là (– 3; 0) và (0; 3) có phương trình là: x3+y3=1xy=3.

Ta thấy điểm O thuộc miền nghiệm có 0 – 0 = 0 > – 3 nên điểm O thỏa mãn bất phương trình x – y ≥ – 3.

Đường thẳng d3 đi qua hai điểm B(9; 3) và C(4; – 2) song song với đường thẳng d2 có phương trình là: x – y = c.

Vì đường thẳng này đi qua B(9; 3) nên ta có: 9 – 3 = c hay c = 6.

Khi đó phương trình d3 là x – y = 6.

Ta thấy điểm O(0; 0) có 0 – 0 = 0 < 3 thuộc miền nghiệm nên điểm O thỏa mãn bất phương trình x – y ≤ 3 (3).

Đường thẳng d1 đi qua hai điểm C(4; – 2) và D(– 5; – 2) song song với trục hoành có phương trình y = – 2.

Ta thấy điểm O thuộc miền nghiệm có 0 > – 2 nên điểm O thỏa mãn bất phương trình y ≥ – 2 (4)

Từ (1), (2), (3) và (4) miền nghiệm của tứ giác ABCD biểu diễn cho hệ bất phương trình:

y3y2xy3xy6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cặp số nào sau đây là nghiệm của hệ bất phương trình x2y<0x+3y>2x+y<3.

Xem đáp án » 26/07/2022 3,137

Câu 2:

Biểu diễn miền nghiệm của hệ bất phương trình sau:

a) x2y3x+y3;

Xem đáp án » 13/07/2024 2,755

Câu 3:

a) Biểu diễn miền nghiệm của hệ bất phương trình: x+y53x+2y12x               1              y0.

Xem đáp án » 13/07/2024 2,753

Câu 4:

Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình:

Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình: (ảnh 1)

Xem đáp án » 26/07/2022 2,722

Câu 5:

b) Tìm x, y là nghiệm của hệ bất phương trình (III) sao cho F = 3x + 7y đạt giá trị lớn nhất, giá trị nhỏ nhất.

Xem đáp án » 13/07/2024 2,639

Câu 6:

b) x+y5x2y2x              1;

Xem đáp án » 13/07/2024 1,587

Câu 7:

Cặp số nào sau đây không là nghiệm của hệ bất phương trình x+y22x3y>2.

Xem đáp án » 26/07/2022 1,481

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn