Câu hỏi:

13/07/2024 690

Chứng minh rằng \[\sqrt 2 \] là số vô tỉ.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Giả sử \[\sqrt 2 \] là số hữu tỉ.

Như vậy, \[\sqrt 2 \] có thể viết được dưới dạng \(\frac{m}{n}\) với m, n Î ℕ và (m, n) = 1.

Ta có \[\sqrt 2 = \frac{m}{n}\] nên \[{\left( {\sqrt 2 } \right)^2} = {\left( {\frac{m}{n}} \right)^2}\] hay \[2 = {\left( {\frac{m}{n}} \right)^2}\].

Suy ra m2 = 2n2.

Mà (m, n) = 1 nên m2 chia hết cho 2 hay m chia hết cho 2.

Do đó m = 2k với k Î ℕ và (k, n) = 1.

Thay m = 2k vào m2 = 2n2 ta được 4k2 = 2n2 hay n2 = 2k2.

Do (k, n) = 1 nên n2 chia hết cho 2 hay n chia hết cho 2.

Suy ra m và n đều chia hết cho 2 mâu thuẫn với (m, n) = 1.

Vậy \[\sqrt 2 \] không là số hữu tỉ mà là số vô tỉ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

\(\sqrt {15} \) là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.

Xem đáp án » 13/07/2024 2,502

Câu 2:

\(\sqrt {26} \) là số Media VietJack

Xem đáp án » 13/07/2024 2,225

Câu 3:

\(2x - \sqrt {1,69} = \sqrt {1,21} \);

Xem đáp án » 13/07/2024 1,863

Câu 4:

Trong các cách viết sau, cách viết nào đúng? Vì sao?
a) \(\sqrt {81} = \pm 9\).
b) \(\sqrt {81} = - 9\).
c) \(\sqrt {81} = 9\).

Xem đáp án » 13/07/2024 1,583

Câu 5:

Tìm x, biết:

\(x + 2\,\,.\,\,\sqrt {16} = - 3\,\,.\,\,\sqrt {49} \);

Xem đáp án » 13/07/2024 1,387

Câu 6:

\(5\,\,.\,\,\left( {\sqrt {\frac{1}{{25}}} - x} \right) - \sqrt {\frac{1}{{81}}} = - \frac{1}{9}\);

Xem đáp án » 13/07/2024 1,278

Câu 7:

Viết các số sau: căn bậc hai số học của 2,4; căn bậc hai số học của 3,648; căn bậc hai số học của \(\frac{{49}}{{1\,\,089}}\).

Xem đáp án » 13/07/2024 1,265

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn