Giải SBT Toán 7 Bài 7. Đại lượng tỉ lệ thuận có đáp án
40 người thi tuần này 4.6 1.7 K lượt thi 9 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 6 (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 23. Đại lượng tỉ lệ nghịch (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 22. Đại lượng tỉ lệ thuận (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 21. Tính chất của dãy tỉ số bằng nhau (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 20. Tỉ lệ thức (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 5 (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 19. Biểu đồ đoạn thẳng (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 18. Biểu đồ hình quạt tròn (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Lời giải:
Vì x, y là hai đại lượng tỉ lệ thuận nên y = kx.
Ta có x = −5; y = −15 nên \(k = \frac{y}{x} = \frac{{ - 15}}{{ - 5}} = 3\).
∙ Với x = −2 thì y = 3 . (−2) = −6;
∙ Với x = 0 thì y = 3 . 0 = 0;
∙ Với y = \(\frac{1}{4}\) thì \(x = \frac{y}{k} = \frac{{\frac{1}{4}}}{3} = \frac{1}{{12}}\);
∙ Với x = \(1\frac{1}{3}\) thì \(y = 3\,\,.\,\,1\frac{1}{3} = 3\,\,.\,\,\frac{4}{3} = 4\);
∙ Với y = −156 thì \(x = \frac{y}{k} = \frac{{ - 156}}{3} = - 52\).
Ta điền vào bảng như sau:
|
x |
−5 |
−2 |
0 |
\(\frac{1}{{12}}\) |
\(1\frac{1}{3}\) |
−52 |
|
y |
−15 |
−6 |
0 |
\(\frac{1}{4}\) |
4 |
−156 |
Lời giải
Lời giải:
Do y tỉ lệ thuận với x theo hệ số tỉ lệ là −2; z tỉ lệ thuận với y theo hệ số tỉ lệ là −3; t tỉ lệ thuận với z theo hệ số tỉ lệ là 4 nên:
y = −2x; z = −3y; t = 4z.
Suy ra: t = 4 . (−3y) = 4 . [−3 . (−2x)] = 24x.
Vậy t tỉ lệ thuận với x theo hệ số tỉ lệ là 24.
Lời giải
Lời giải:
Vì x, y là hai đại lượng tỉ lệ thuận nên:
\(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\) hay \[\frac{{{x_1}}}{2} = \frac{{ - \frac{7}{6}}}{{ - \frac{1}{2}}} = \frac{7}{3}\].
Suy ra \[{x_1} = \frac{7}{3}\,\,.\,\,2 = \frac{{14}}{3}\].
Vậy \[{x_1} = \frac{{14}}{3}\].
Lời giải
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}} = \frac{{{x_1} - {y_1}}}{{{x_2} - {y_2}}} = \frac{2}{{ - 4 - 3}} = \frac{{ - 2}}{7}\).
Do đó \({x_1} = \frac{{ - 2}}{7}\,\,.\,\,{x_2} = \frac{{ - 2}}{7}\,\,.\,\,( - 4) = \frac{8}{7}\); \({y_1} = \frac{{ - 2}}{7}\,\,.\,\,{y_2} = \frac{{ - 2}}{7}\,\,.\,\,3 = \frac{{ - 6}}{7}\).
Vậy \({x_1} = \frac{8}{7}\); \({y_1} = \frac{{ - 6}}{7}\).
Lời giải
Lời giải:
Gọi x (kg) là khối lượng đường bác Lan cần dùng để ngâm 10,8 kg mơ theo tỉ lệ đã cho.
Vì theo tỉ lệ đã cho, khối lượng đường và khối lượng mơ là hai đại lượng tỉ lệ thuận nên \(\frac{x}{{1,5}} = \frac{{10,8}}{4} = 2,7\).
Suy ra x = 2,7 . 1,5 = 4,05 (kg).
Do đó, bác Lan cần dùng 4,05 kg đường.
Vậy bác Lan ước tính sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.