Giải SBT Toán 7 Bài 7. Đại lượng tỉ lệ thuận có đáp án
31 người thi tuần này 4.6 1.4 K lượt thi 9 câu hỏi
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
Bộ 10 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải:
Vì x, y là hai đại lượng tỉ lệ thuận nên y = kx.
Ta có x = −5; y = −15 nên \(k = \frac{y}{x} = \frac{{ - 15}}{{ - 5}} = 3\).
∙ Với x = −2 thì y = 3 . (−2) = −6;
∙ Với x = 0 thì y = 3 . 0 = 0;
∙ Với y = \(\frac{1}{4}\) thì \(x = \frac{y}{k} = \frac{{\frac{1}{4}}}{3} = \frac{1}{{12}}\);
∙ Với x = \(1\frac{1}{3}\) thì \(y = 3\,\,.\,\,1\frac{1}{3} = 3\,\,.\,\,\frac{4}{3} = 4\);
∙ Với y = −156 thì \(x = \frac{y}{k} = \frac{{ - 156}}{3} = - 52\).
Ta điền vào bảng như sau:
x |
−5 |
−2 |
0 |
\(\frac{1}{{12}}\) |
\(1\frac{1}{3}\) |
−52 |
y |
−15 |
−6 |
0 |
\(\frac{1}{4}\) |
4 |
−156 |
Lời giải
Lời giải:
Do y tỉ lệ thuận với x theo hệ số tỉ lệ là −2; z tỉ lệ thuận với y theo hệ số tỉ lệ là −3; t tỉ lệ thuận với z theo hệ số tỉ lệ là 4 nên:
y = −2x; z = −3y; t = 4z.
Suy ra: t = 4 . (−3y) = 4 . [−3 . (−2x)] = 24x.
Vậy t tỉ lệ thuận với x theo hệ số tỉ lệ là 24.
Lời giải
Lời giải:
Vì x, y là hai đại lượng tỉ lệ thuận nên:
\(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\) hay \[\frac{{{x_1}}}{2} = \frac{{ - \frac{7}{6}}}{{ - \frac{1}{2}}} = \frac{7}{3}\].
Suy ra \[{x_1} = \frac{7}{3}\,\,.\,\,2 = \frac{{14}}{3}\].
Vậy \[{x_1} = \frac{{14}}{3}\].
Lời giải
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}} = \frac{{{x_1} - {y_1}}}{{{x_2} - {y_2}}} = \frac{2}{{ - 4 - 3}} = \frac{{ - 2}}{7}\).
Do đó \({x_1} = \frac{{ - 2}}{7}\,\,.\,\,{x_2} = \frac{{ - 2}}{7}\,\,.\,\,( - 4) = \frac{8}{7}\); \({y_1} = \frac{{ - 2}}{7}\,\,.\,\,{y_2} = \frac{{ - 2}}{7}\,\,.\,\,3 = \frac{{ - 6}}{7}\).
Vậy \({x_1} = \frac{8}{7}\); \({y_1} = \frac{{ - 6}}{7}\).
Lời giải
Lời giải:
Gọi x (kg) là khối lượng đường bác Lan cần dùng để ngâm 10,8 kg mơ theo tỉ lệ đã cho.
Vì theo tỉ lệ đã cho, khối lượng đường và khối lượng mơ là hai đại lượng tỉ lệ thuận nên \(\frac{x}{{1,5}} = \frac{{10,8}}{4} = 2,7\).
Suy ra x = 2,7 . 1,5 = 4,05 (kg).
Do đó, bác Lan cần dùng 4,05 kg đường.
Vậy bác Lan ước tính sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.