Câu hỏi trong đề: Giải SBT Toán 7 Bài 7. Đại lượng tỉ lệ thuận có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}} = \frac{{{x_1} - {y_1}}}{{{x_2} - {y_2}}} = \frac{2}{{ - 4 - 3}} = \frac{{ - 2}}{7}\).
Do đó \({x_1} = \frac{{ - 2}}{7}\,\,.\,\,{x_2} = \frac{{ - 2}}{7}\,\,.\,\,( - 4) = \frac{8}{7}\); \({y_1} = \frac{{ - 2}}{7}\,\,.\,\,{y_2} = \frac{{ - 2}}{7}\,\,.\,\,3 = \frac{{ - 6}}{7}\).
Vậy \({x_1} = \frac{8}{7}\); \({y_1} = \frac{{ - 6}}{7}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Vì x, y là hai đại lượng tỉ lệ thuận nên:
\(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\) hay \[\frac{{{x_1}}}{2} = \frac{{ - \frac{7}{6}}}{{ - \frac{1}{2}}} = \frac{7}{3}\].
Suy ra \[{x_1} = \frac{7}{3}\,\,.\,\,2 = \frac{{14}}{3}\].
Vậy \[{x_1} = \frac{{14}}{3}\].
Lời giải
Lời giải:
Gọi x (triệu đồng), y (triệu đồng), z (triệu đồng) lần lượt là số tiền lãi của công ty A, B, C.
Theo đề bài, tổng số tiền lãi của hai công ty A và C nhiều hơn số tiền lãi của công ty B là 900 triệu đồng nên:
x + z – y = 900.
Do số tiền lãi thu được của mỗi công ty tỉ lệ thuận với số tiền góp vốn nên ta có: z = 2x; y = 1,5x
Suy ra \(\frac{z}{2} = \frac{x}{1};\,\,\frac{y}{{1,5}} = \frac{x}{1}\) hay \(\frac{x}{1} = \frac{y}{{1,5}} = \frac{z}{2}\).
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{1} = \frac{y}{{1,5}} = \frac{z}{2} = \frac{{x + z - y}}{{1 + 2 - 1,5}} = \frac{{900}}{{1,5}} = 600\).
Do đó x = 1 . 600 = 600 (triệu đồng);
y = 1,5 . 600 = 900 (triệu đồng);
z = 2 . 600 = 1 200 (triệu đồng).
Vậy số tiền lãi của công ty A, B, C lần lượt là 600 triệu đồng, 900 triệu đồng, 1 200 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.