Câu hỏi:

13/07/2024 3,933 Lưu

Cho biết x, y là hai đại lượng tỉ lệ thuận với nhau. Với mỗi giá trị x1, x2 của x, ta có một giá trị tương ứng y1, y2 của y.

Tìm x1 biết x2 = 2; \({y_1} = - \frac{7}{6}\); \({y_2} = - \frac{1}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Vì x, y là hai đại lượng tỉ lệ thuận nên:

\(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\) hay \[\frac{{{x_1}}}{2} = \frac{{ - \frac{7}{6}}}{{ - \frac{1}{2}}} = \frac{7}{3}\].

Suy ra \[{x_1} = \frac{7}{3}\,\,.\,\,2 = \frac{{14}}{3}\].

Vậy \[{x_1} = \frac{{14}}{3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Gọi x (triệu đồng), y (triệu đồng), z (triệu đồng) lần lượt là số tiền lãi của công ty A, B, C.

Theo đề bài, tổng số tiền lãi của hai công ty A và C nhiều hơn số tiền lãi của công ty B là 900 triệu đồng nên:

x + z – y = 900.

Do số tiền lãi thu được của mỗi công ty tỉ lệ thuận với số tiền góp vốn nên ta có: z = 2x; y = 1,5x

Suy ra \(\frac{z}{2} = \frac{x}{1};\,\,\frac{y}{{1,5}} = \frac{x}{1}\) hay \(\frac{x}{1} = \frac{y}{{1,5}} = \frac{z}{2}\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{1} = \frac{y}{{1,5}} = \frac{z}{2} = \frac{{x + z - y}}{{1 + 2 - 1,5}} = \frac{{900}}{{1,5}} = 600\).

Do đó x = 1 . 600 = 600 (triệu đồng);

y = 1,5 . 600 = 900 (triệu đồng);

z = 2 . 600 = 1 200 (triệu đồng).

Vậy số tiền lãi của công ty A, B, C lần lượt là 600 triệu đồng, 900 triệu đồng, 1 200 triệu đồng.

Lời giải

Lời giải:

Do y tỉ lệ thuận với x theo hệ số tỉ lệ là −2; z tỉ lệ thuận với y theo hệ số tỉ lệ là −3; t tỉ lệ thuận với z theo hệ số tỉ lệ là 4 nên:

y = −2x; z = −3y; t = 4z.

Suy ra: t = 4 . (−3y) = 4 . [−3 . (−2x)] = 24x.

Vậy t tỉ lệ thuận với x theo hệ số tỉ lệ là 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP