Giải SBT Toán 7 CD Bài 3. Hai tam giác bằng nhau có đáp án
33 người thi tuần này 4.6 1.4 K lượt thi 9 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 6 (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 23. Đại lượng tỉ lệ nghịch (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 22. Đại lượng tỉ lệ thuận (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 21. Tính chất của dãy tỉ số bằng nhau (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 20. Tỉ lệ thức (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 5 (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 19. Biểu đồ đoạn thẳng (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 18. Biểu đồ hình quạt tròn (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Hình a)
Xét tam giác XYT và tam giác XOT có:
+) XY = XO, YT = OT, XT là cạnh chung;
+) .
Do đó ∆XYT = ∆XOT.
Vậy ∆XYT = ∆XOT.
Hình b)
Xét tam giác ABC và tam giác NPM có:
+) AB = NP, BC = PM, AC = NM;
+) .
Do đó ∆ABC = ∆NPM.
Vậy ∆ABC = ∆NPM.
Lời giải
Vì tam giác ABC và tam giác có ba đỉnh X, Y, Z bằng nhau nên để viết được kí hiệu sự bằng nhau của hai tam giác đó, ta sẽ tìm các đỉnh tương ứng của hai tam giác này.
a) Do nên đỉnh A tương ứng với đỉnh X, đỉnh B tương ứng với đỉnh Z.
Khi đó đỉnh C tương ứng với đỉnh Y.
Do đó kí hiệu sự bằng nhau của hai tam giác này là ∆ABC = ∆XZY.
Vậy ∆ABC = ∆XZY.
Lời giải
b) Ta có AB = XY, BC = YZ nên đỉnh B tương ứng với đỉnh Y.
Khi đó đỉnh A tương ứng với đỉnh X và đỉnh C tương tứng với đỉnh Z.
Do đó kí hiệu sự bằng nhau của hai tam giác này là ∆ABC = ∆XYZ.
Vậy ∆ABC = ∆XYZ.
Lời giải
Vì ∆ABC = ∆MNP nên AB = MN, BC = NP, AC = MP (các cặp cạnh tương ứng).
Suy ra AB + BC + AC = MN + NP + MP.
Hay chu vi của tam giác MNP bằng chu vi của tam giác ABC.
Do độ dài các cạnh của tam giác ABC đều là số tự nhiên nên chu vi của tam giác ABC cũng là số tự nhiên.
Gọi chu vi của tam giác ABC là x (x là số tự nhiên).
Khi đó, chu vi của tam giác MNP là x.
Do đó, tổng chu vi của tam giác ABC và tam giác MNP là:
x + x = 2x (là số chẵn).
Vậy bạn Sơn nói không đúng.
Lời giải
Vì ∆ ABC = ∆ DEG nên ta có: AB = DE, BC = EG, AC = DG (các cặp cạnh tương ứng).
Do đó chu vi của tam giác DEG bằng chu vi của tam giác ABC.
Mà chu vi tam giác ABC là: 4 + 7 + 9,5 = 20,5 (dm).
Do đó chu vi tam giác DEG bằng 20,5 dm.
Vậy chu vi tam giác DEG bằng 20,5 dm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.