Bạn Sơn cho rằng “Nếu độ dài các cạnh của tam giác ABC đều là số tự nhiên và ∆ABC = ∆MNP thì tổng chu vi của tam giác ABC và tam giác MNP là số lẻ”. Bạn Sơn nói như vậy có đúng không? Vì sao?
Bạn Sơn cho rằng “Nếu độ dài các cạnh của tam giác ABC đều là số tự nhiên và ∆ABC = ∆MNP thì tổng chu vi của tam giác ABC và tam giác MNP là số lẻ”. Bạn Sơn nói như vậy có đúng không? Vì sao?
Quảng cáo
Trả lời:

Vì ∆ABC = ∆MNP nên AB = MN, BC = NP, AC = MP (các cặp cạnh tương ứng).
Suy ra AB + BC + AC = MN + NP + MP.
Hay chu vi của tam giác MNP bằng chu vi của tam giác ABC.
Do độ dài các cạnh của tam giác ABC đều là số tự nhiên nên chu vi của tam giác ABC cũng là số tự nhiên.
Gọi chu vi của tam giác ABC là x (x là số tự nhiên).
Khi đó, chu vi của tam giác MNP là x.
Do đó, tổng chu vi của tam giác ABC và tam giác MNP là:
x + x = 2x (là số chẵn).
Vậy bạn Sơn nói không đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do ∆ABC = ∆XYZ (giả thiết)
Nên AB = XY, BC = YZ, AC = XZ (các cặp cạnh tương ứng)
Mà AC = 35 cm nên XZ = 35 cm.
Ta có YZ – XY = 10 (cm) suy ra BC – AB = 10 (cm).
Hay BC = AB + 10.
Mà 3BC = 5AB
Suy ra 3(AB + 10) = 5AB
Hay 5AB – 3AB = 30
Do đó 2AB = 30
Suy ra AB = 15 (cm)
Khi đó BC = 25 (cm)
Lại có AB = XY, BC = YZ nên XY = 15 (cm) và YZ = 25 (cm).
Vậy XY = 15 cm, YZ = 25 cm, XZ = 35 cm.
Lời giải
Vì tam giác ABC và tam giác có ba đỉnh X, Y, Z bằng nhau nên để viết được kí hiệu sự bằng nhau của hai tam giác đó, ta sẽ tìm các đỉnh tương ứng của hai tam giác này.
a) Do nên đỉnh A tương ứng với đỉnh X, đỉnh B tương ứng với đỉnh Z.
Khi đó đỉnh C tương ứng với đỉnh Y.
Do đó kí hiệu sự bằng nhau của hai tam giác này là ∆ABC = ∆XZY.
Vậy ∆ABC = ∆XZY.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.