Câu hỏi:
08/08/2022 386Cho 0° ≤ x ≤ 180°. Tìm đẳng thức đúng trong các đẳng thức dưới đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Với 0° ≤ x ≤ 180°, ta có
sin4 x + cos4 x
= (sin2 x)2 + (cos2 x)2
= [(sin2 x)2 + 2 sin2 x. cos2 x + (cos2 x)2] – 2 sin2 x. cos2 x
= (sin2 x + cos2 x)2 – 2 sin2 x. cos2 x
= 1 – 2 sin2 x. cos2 x.
Vậy sin4 x + cos4 x = 1 – 2 sin2 x. cos2 x.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biểu thức \(\sqrt {{{\sin }^4}x + 4{{\cos }^2}x} + \sqrt {{{\cos }^4}x + 4{{\sin }^2}x} + {\tan ^2}x\) bằng biểu thức nào sau đây?
Câu 6:
Cho góc x với 0° < x < 90°. Trong các đẳng thức dưới đây, đẳng thức đúng là?
Câu 7:
Chọn hệ thức đúng được suy ra từ hệ thức cos2 α + sin2 α = 1 với 0° ≤ α ≤ 180°?
về câu hỏi!