Tam giác ABC vuông tại A có đường cao AH = 4,8 và \(\frac{{AB}}{{AC}} = \frac{3}{4}\). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Từ \(\frac{{AB}}{{AC}} = \frac{3}{4}\)\( \Leftrightarrow \frac{{AB}}{3} = \frac{{AC}}{4}\).
Đặt \(\frac{{AB}}{3} = \frac{{AC}}{4} = k\), k > 0 ⇒ AB = 3k; AC = 4k
Ta có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\)\( \Leftrightarrow \frac{1}{{{{4,8}^2}}} = \frac{1}{{9{k^2}}} + \frac{1}{{16{k^2}}}\)⇒ k = 2.
Do đó: AB = 6; AC = 8 ⇒ BC = 10 (sử dụng định lí Pythagore).
Trong tam giác vuông bán kính đường tròn ngoại tiếp tam giác bằng nửa cạnh huyền.
Vậy R = \(\frac{{BC}}{2} = \frac{{10}}{2}\)= 5.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Tam giác ABC có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)
Thay số: \(B{C^2} = {4^2} + {8^2} - 2.4.8.\cos 30^\circ = 80 - 32\sqrt 3 \)
Do đó: BC ≈ 5.
Ta có: \(\frac{{BC}}{{\sin A}} = 2R\)\( \Rightarrow R = \frac{{BC}}{{2\sin A}} \approx \frac{5}{{2.\sin 30^\circ }} = 5\).
Lời giải
Hướng dẫn giải:
Theo địn lí côsin ta có: \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)
Thay số: \(B{C^2} = {6^2} + {8^2} - 2.6.8.\cos 60^\circ = 52\)
\( \Rightarrow BC = \sqrt {52} \).
Do đó ta có nửa chu vi tam giác ABC là:
\(p = \frac{1}{2}\left( {AB + AC + BC} \right) = \frac{1}{2}\left( {6 + 8 + \sqrt {52} } \right) = 7 + \sqrt {13} \).
Diện tích tam giác ABC là:
\(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} = 12\sqrt 3 \).
Mặt khác \(S = p.r \Rightarrow r = \frac{S}{p} = \frac{{12\sqrt 3 }}{{7 + \sqrt {13} }} \approx 1,96\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.