Câu hỏi:

09/08/2022 367 Lưu

Cho hình vẽ dưới đây.

Cho hình vẽ dưới đây. Tam giác BHC là tam giác gì? (ảnh 1)

Tam giác BHC là tam giác gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Tam giác AIC vuông tại I \(\left( {\widehat I = 90^\circ } \right)\) nên \(\widehat A + \widehat {ACI} = 90^\circ \) (trong tam giác vuông, hai góc nhọn phụ nhau)

Suy ra \(\widehat A = 90^\circ - \widehat {ACI}\) (1)

Tam giác CHK vuông tại K \(\left( {\widehat K = 90^\circ } \right)\) nên \(\widehat {CHK} + \widehat {KCH} = 90^\circ \) (trong tam giác vuông, hai góc nhọn phụ nhau)

Suy ra \(\widehat {CHK} = 90^\circ - \widehat {KCH}\) (2)

\(\widehat {ACI}\) chính là góc \(\widehat {KCH}\) (3)

Từ (1), (2) và (3) ta có: \(\widehat {CHK} = \widehat A = 60^\circ \)

Lại có \(\widehat {CHK}\)\(\widehat {BHC}\) là hai góc kề bù nên \(\widehat {CHK} + \widehat {BHC} = 180^\circ \) (tính chất hai góc kề bù)

Suy ra \(\widehat {BHC} = 180^\circ - \widehat {CHK}\)

Do đó \(\widehat {BHC} = 180^\circ - 60^\circ = 120^\circ > 90^\circ \)

Khi đó góc BHC là góc tù

Vậy tam giác BHC là tam giác tù.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat A = 180^\circ - \widehat B - \widehat C\)

Hay \(\widehat A = 180^\circ - 67^\circ - 42^\circ = 71^\circ \)

Ta thấy 42° < 67° < 71° < 90° nên góc A, góc B, góc C đều là góc nhọn.

Vậy \(\widehat A = 71^\circ \) và tam giác ABC là tam giác nhọn.

Lời giải

Đáp án đúng là: C

Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat A = 180^\circ - \widehat B - \widehat C\)

Hay \(\widehat A = 180^\circ - 50^\circ - 40^\circ = 90^\circ \)

Xét hai đường thẳng DE và AB có: \(\widehat {BAE} = \widehat {AED}\)

Mà hai góc này ở vị trí so le trong

Do đó DE // AB

Suy ra \(\widehat {EDC} = \widehat A\) (hai góc ở vị trí đồng vị)

\(\widehat A = 90^\circ \)

Do đó \(\widehat {EDC} = 90^\circ \)

Vậy tam giác CDE là tam giác vuông.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP