10 Bài tập Xác định loại tam giác dựa vào số đo góc của tam giác đó (có lời giải)
37 người thi tuần này 4.6 257 lượt thi 10 câu hỏi 30 phút
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 4
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Cho tam giác ABC như hình vẽ:

Tính số đo góc A và cho biết tam giác ABC là tam gác gì?
Lời giải
Đáp án đúng là: A
Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat A = 180^\circ - \widehat B - \widehat C\)
Hay \(\widehat A = 180^\circ - 67^\circ - 42^\circ = 71^\circ \)
Ta thấy 42° < 67° < 71° < 90° nên góc A, góc B, góc C đều là góc nhọn.
Vậy \(\widehat A = 71^\circ \) và tam giác ABC là tam giác nhọn.
Lời giải
Đáp án đúng là: D
Ta có \(\widehat {ADB}\) và \(\widehat {ADC}\) là hai góc kề bù nên \(\widehat {ADB} + \widehat {ADC} = 180^\circ \) (tính chất hai góc kề bù)
Suy ra \(\widehat {ADB} = 180^\circ - \widehat {ADC}\)
Hay \(\widehat {ADB} = 180^\circ - 60^\circ = 120^\circ > 90^\circ \)
Do đó góc ADB là góc tù
Vậy tam giác ABD là tam giác tù.
Câu 3
Cho hình vẽ:
Biết Mx // Py, \(\widehat {xMN} = 60^\circ \) và \[\widehat {NPy} = 34^\circ .\] Tính số đo góc MNP và tam giác MNP là tam giác gì?
Cho hình vẽ:

Biết Mx // Py, \(\widehat {xMN} = 60^\circ \) và \[\widehat {NPy} = 34^\circ .\] Tính số đo góc MNP và tam giác MNP là tam giác gì?
Lời giải
Đáp án đúng là: D

Kéo dài MN cắt Py tại Q.
Vì Mx // Py nên ta có: \(\widehat {xMQ} = \widehat {MQP}\) (hai góc so le trong)
Mà \(\widehat {xMQ} = 60^\circ \) do đó \(\widehat {MQP} = 60^\circ \)
Xét tam giác NPQ có \(\widehat {MNP}\) là góc ngoài của tam giác tại đỉnh N
Nên \(\widehat {MNP} = \widehat {NPQ} + \widehat {NQP}\) (tính chất góc ngoài của tam giác)
Suy ra \(\widehat {MNP} = 34^\circ + 60^\circ = 94^\circ > 90^\circ \)
Do đó góc MNP là góc tù
Vậy \(\widehat {MNP} = 94^\circ \) và tam giác MNP là tam giác tù.
Câu 4
Cho hình vẽ biết \(\widehat {ABC} = 50^\circ ,\widehat {ACB} = 40^\circ \) và \(\widehat {BAE} = \widehat {AED}.\)
Tam giác CDE là tam giác gì?
Cho hình vẽ biết \(\widehat {ABC} = 50^\circ ,\widehat {ACB} = 40^\circ \) và \(\widehat {BAE} = \widehat {AED}.\)

Tam giác CDE là tam giác gì?
Lời giải
Đáp án đúng là: C
Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat A = 180^\circ - \widehat B - \widehat C\)
Hay \(\widehat A = 180^\circ - 50^\circ - 40^\circ = 90^\circ \)
Xét hai đường thẳng DE và AB có: \(\widehat {BAE} = \widehat {AED}\)
Mà hai góc này ở vị trí so le trong
Do đó DE // AB
Suy ra \(\widehat {EDC} = \widehat A\) (hai góc ở vị trí đồng vị)
Mà \(\widehat A = 90^\circ \)
Do đó \(\widehat {EDC} = 90^\circ \)
Vậy tam giác CDE là tam giác vuông.
Lời giải
Đáp án đúng là: A
Tam giác AIC vuông tại I \(\left( {\widehat I = 90^\circ } \right)\) nên \(\widehat A + \widehat {ACI} = 90^\circ \) (trong tam giác vuông, hai góc nhọn phụ nhau)
Suy ra \(\widehat A = 90^\circ - \widehat {ACI}\) (1)
Tam giác CHK vuông tại K \(\left( {\widehat K = 90^\circ } \right)\) nên \(\widehat {CHK} + \widehat {KCH} = 90^\circ \) (trong tam giác vuông, hai góc nhọn phụ nhau)
Suy ra \(\widehat {CHK} = 90^\circ - \widehat {KCH}\) (2)
Mà \(\widehat {ACI}\) chính là góc \(\widehat {KCH}\) (3)
Từ (1), (2) và (3) ta có: \(\widehat {CHK} = \widehat A = 60^\circ \)
Lại có \(\widehat {CHK}\) và \(\widehat {BHC}\) là hai góc kề bù nên \(\widehat {CHK} + \widehat {BHC} = 180^\circ \) (tính chất hai góc kề bù)
Suy ra \(\widehat {BHC} = 180^\circ - \widehat {CHK}\)
Do đó \(\widehat {BHC} = 180^\circ - 60^\circ = 120^\circ > 90^\circ \)
Khi đó góc BHC là góc tù
Vậy tam giác BHC là tam giác tù.
Câu 6
Cho tam giác ABC có \(\widehat B = 35^\circ ,\widehat C = 65^\circ .\) Tia phân giác góc A cắt cạnh BC tại D.
Tam giác ADC là tam giác gì?
Cho tam giác ABC có \(\widehat B = 35^\circ ,\widehat C = 65^\circ .\) Tia phân giác góc A cắt cạnh BC tại D.
Tam giác ADC là tam giác gì?
Lời giải
Đáp án đúng là: C

Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat A = 180^\circ - \widehat B - \widehat C\)
Hay \(\widehat A = 180^\circ - 35^\circ - 65^\circ = 80^\circ \)
Mà tia AD là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD} = \frac{1}{2}\widehat {BAC}\)
Suy ra \(\widehat {BAD} = \widehat {CAD} = \frac{1}{2}.80^\circ = 40^\circ \)
Mặt khác: \(\widehat {ADC}\) là góc ngoài của tam giác ABD tại đỉnh D nên \(\widehat {ADC} = \widehat {BAD} + \widehat B\)
Hay \(\widehat {ADC} = 40^\circ + 35^\circ = 75^\circ \)
Tam giác ADC có \(\widehat {CAD} = 40^\circ < 90^\circ ,\widehat {ACD} = 65^\circ < 90^\circ ,\widehat {ADC} = 75^\circ < 90^\circ \)
Do đó tam giác ADC có ba góc nhọn.
Vậy tam giác ADC là tam giác nhọn.
Lời giải
Đáp án đúng là: C
Vì IK // HG nên \(\widehat {KIH} = \widehat {OHx}\) (hai góc so le trong)
Mà \(\widehat {OHx} = 130^\circ \) nên \(\widehat {KIH} = 130^\circ \)
Lại có \(\widehat {KIH}\) và \(\widehat {OIK}\) là hai góc kề bù nên \(\widehat {OIK} + \widehat {KIH} = 180^\circ \) (tính chất hai góc kề bù)
Suy ra \(\widehat {OIK} = 180^\circ - \widehat {KIH}\)
Do đó \(\widehat {OIK} = 180^\circ - 130^\circ = 50^\circ \)
Xét tam giác OIK có \(\widehat {IKG}\) là góc ngoài của tam giác tại đỉnh K
Nên \(\widehat {IKG} = \widehat {OIK} + \widehat {IOK}\) (tính chất góc ngoài của tam giác)
Suy ra \[\widehat {IOK} = \widehat {IKG} - \widehat {OIK}\]
Hay \(\widehat {IOK} = 140^\circ - 50^\circ = 90^\circ \)
Do đó góc IOK là góc vuông
Vậy tam giác OIK là tam giác vuông tại O.
Câu 8
Cho hình vẽ như sau:
Biết tia Ny là tia phân giác của \(\widehat {xNz},\widehat {yNz} = 40^\circ ,\widehat {NPM} = \widehat {tPv}\) và Nz // Pt. Số đo của \(\widehat {NPM}\) là bao nhiêu và tam giác MNP là tam giác gì?
Cho hình vẽ như sau:

Biết tia Ny là tia phân giác của \(\widehat {xNz},\widehat {yNz} = 40^\circ ,\widehat {NPM} = \widehat {tPv}\) và Nz // Pt. Số đo của \(\widehat {NPM}\) là bao nhiêu và tam giác MNP là tam giác gì?
Lời giải
Đáp án đúng là: D
Vì tia Ny là tia phân giác của \(\widehat {xNz}\) nên \[\widehat {yNz} = \frac{1}{2}.\widehat {xNz}\] (tính chất tia phân giác của một góc)
Suy ra \(\widehat {xNz} = 2.\widehat {yNz}\)
Mà \(\widehat {yNz} = 40^\circ \) nên \(\widehat {xNz} = 2.\widehat {yNz} = 2.40^\circ = 80^\circ \)
Lại có Nz // Pt nên \(\widehat {xNz} = \widehat {NPt}\) (hai góc so le trong)
Do đó \(\widehat {NPt} = 80^\circ \)
Ta lại có \(\widehat {MPN} + \widehat {NPt} + \widehat {tPv} = 180^\circ \)
Mà \(\widehat {NPM} = \widehat {tPv}\), \(\widehat {NPt} = 80^\circ \)
Suy ra \[\widehat {NPM} + 80^\circ + \widehat {NPM} = 180^\circ \]
Hay \[2.\widehat {NPM} = 180^\circ - 80^\circ = 100^\circ \]
Do đó \[\widehat {NPM} = 100^\circ :2 = 50^\circ \]
Mặt khác \(\widehat {MNP} = \widehat {xNy}\) (hai góc đối đỉnh) nên \(\widehat {MNP} = 40^\circ \)
Xét tam giác MNP có \[\widehat {NPM} = 50^\circ \] và \(\widehat {MNP} = 40^\circ \) ta có:
\(\widehat {NMP} + \widehat {MNP} + \widehat {NPM} = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat {NMP} = 180^\circ - \widehat {MNP} - \widehat {NPM}\) hay \(\widehat {NMP} = 180^\circ - 40^\circ - 50^\circ = 90^\circ \)
Suy ra tam giác MNP vuông tại M.
Vậy ta chọn phương án D.
Câu 9
Cho tam giác ABC vuông tại A. Lấy điểm K nằm trên cạnh AC. Lấy điểm E nằm trên cạnh BK. Tam giác BEC là tam giác gì?
Cho tam giác ABC vuông tại A. Lấy điểm K nằm trên cạnh AC. Lấy điểm E nằm trên cạnh BK. Tam giác BEC là tam giác gì?
Lời giải
Đáp án đúng là: A

Tam giác ABC vuông tại A nên \(\widehat A = 90^\circ \)
Xét tam giác ABK vuông tại A \(\left( {\widehat A = 90^\circ } \right)\) có \(\widehat {BKC}\) là góc ngoài của tam giác tại đỉnh K
Do đó \(\widehat {BKC} = \widehat A + \widehat {ABK}\) (tính chất góc ngoài của tam giác)
Tương tự ta có \(\widehat {BEC}\) là góc ngoài của tam giác CKE tại đỉnh E nên \(\widehat {BEC} = \widehat {EKC} + \widehat {ECK}\)
Suy ra \(\widehat {BEC} = \left( {\widehat A + \widehat {ABK}} \right) + \widehat {ECK} = \widehat A + \widehat {ABK} + \widehat {ECK}\)
Do đó \(\widehat {BEC} > \widehat A\) mà \(\widehat A = 90^\circ \)
Do đó \(\widehat {BEC} > 90^\circ \) là góc tù
Vậy tam giác BEC là tam giác tù.
Lời giải
Đáp án đúng là: B
Xét tam giác CDE có \(\widehat {D{\rm{Ex}}}\) là góc ngoài của tam giác tại đỉnh E
Nên \(\widehat {D{\rm{Ex}}} = \widehat D + \widehat {DCE}\) (tính chất góc ngoài của tam giác)
Suy ra \(\widehat {DCE} = \widehat {{\rm{DEx}}} - \widehat D\)
Hay \(\widehat {DCE} = {\rm{120}}^\circ - 70^\circ = 50^\circ \)
Lại có \(\widehat {ACB} = \widehat {DCE}\) (hai góc đối đỉnh)
Nên \(\widehat {ACB} = 50^\circ \)
Xét tam giác ABC có \(\widehat A + \widehat B + \widehat {ACB} = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat B = 180^\circ - \widehat A - \widehat {ACB}\)
Hay \(\widehat B = 180^\circ - 80^\circ - 50^\circ = 50^\circ \)
Tam giác ABC có \(\widehat A = 80^\circ < 90^\circ ,\widehat B = 50^\circ < 90^\circ ,\widehat {ACB} = 50^\circ < 90^\circ \)
Do đó ba góc của tam giác ABC đều là góc nhọn
Vậy tam giác ABC là tam giác nhọn.
51 Đánh giá
50%
40%
0%
0%
0%