Câu hỏi:
09/08/2022 1,090Cho ∆ABC cân tại A, M là trung điểm BC. Gọi D, E lần lượt là hình chiếu của M trên AB và AC. Kết luận nào sau đây đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Xét ∆BDM và ∆CEM, có:
\[\widehat {BDM} = \widehat {CEM} = 90^\circ \].
\[\widehat {DBM} = \widehat {ECM}\] (∆ABC cân tại A).
MB = MC (M là trung điểm BC).
Do đó ∆BDM = ∆CEM (cạnh huyền – góc nhọn).
Suy ra BD = CE và \[\widehat {BMD} = \widehat {CME}\] (cặp cạnh và cặp góc tương ứng).
Do đó đáp án A, C đúng.
Xét ∆ADM và ∆AEM, có:
\[\widehat {ADM} = \widehat {AEM} = 90^\circ \].
AM là cạnh chung.
DM = EM (∆BDM = ∆CEM).
Do đó ∆ADM = ∆AEM (cạnh huyền – cạnh góc vuông).
Suy ra AD = AE (cặp cạnh tương ứng).
Do đó đáp án B đúng.
Vậy ta chọn đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC cân tại A có \[\widehat A = 36^\circ \]. Tia phân giác \[\widehat B\] cắt cạnh AC tại D. Khẳng định nào sau đây sai.
Câu 2:
Cho ∆ABC cân tại A có \[\widehat A < 90^\circ \]. Kẻ BD ⊥ AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Khẳng định nào sau đây đúng?
Câu 3:
Cho ∆ABC cân tại A. Gọi M, N lần lượt là trung điểm của AC và AB. Cho các khẳng định sau:
(I) ∆ABM = ∆ACN.
(II) ∆BMC = ∆CNB.
Câu 4:
Cho ∆ABC cân tại A, gọi M là trung điểm BC. Trên cạnh AB lấy điểm D. Từ D kẻ đường vuông góc với AM tại K và kéo dài cắt cạnh AC tại E. Khẳng định nào sau đây đúng?
Câu 5:
Cho ∆ABC cân tại A. Gọi I là trung điểm BC. Trên cạnh AB lấy điểm D, trên cạnh DI lấy điểm E sao cho I là trung điểm DE. Khẳng định nào sau đây đúng nhất?
Câu 6:
Cho ∆ABC cân tại A. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho AD = AE. Kết luận nào sau đây đúng?
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi Giữa kì 2 Toán 7 Cánh diều cấu trúc mới có đáp án - Đề 01
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 01
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ thuận (có lời giải)
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ nghịch (có lời giải)
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 02
Đề kiểm tra giữa học kì 2 Toán lớp 7 CTST - Đề 01 có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận