Câu hỏi:

09/08/2022 656 Lưu

Chọn phát biểu sai trong các phát biểu sau.

A. Để nhận biết và chứng minh một tam giác là tam giác đều, ta cần chứng minh tam giác đó có ba cạnh bằng nhau;

B. Để nhận biết và chứng minh một tam giác là tam giác cân, ta cần chứng minh tam giác đó hai góc bằng nhau;

C. Để nhận biết và chứng minh một tam giác là tam giác đều, ta cần chứng minh tam giác đó có một góc bằng 60°;

D. Để nhận biết và chứng minh một tam giác là tam giác cân, ta cần chứng minh tam giác đó có hai góc bằng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Đáp án A, B, D đúng.

Đáp án C sai. Sửa lại:

Cách sửa 1: Để nhận biết và chứng minh một tam giác là tam giác đều, ta cần chứng minh tam giác đó có hai góc bằng 60°;

Cách sửa 2: Để nhận biết và chứng minh một tam giác là tam giác đều, ta cần chứng minh tam giác đó là một tam giác cân và có một góc bằng 60°.

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. ∆DEF đều;

B. ∆DEF là tam giác vuông tại D;

C. ∆DEF là tam giác vuông cân tại F;

D. ∆DEF là tam giác vuông tại E.

Lời giải

Đáp án đúng là: A

Cho tam giác ABC đều. Trên các cạnh AB, BC, CA lấy theo thứ tự các  (ảnh 1)

Vì ba điểm A, D, B thẳng hàng nên BD = AB – AD.

Vì ba điểm A, F, C thẳng hàng nên AF = AC – CF.

Ta có AB = AC (∆ABC đều) và AD = CF (giả thiết).

Do đó AB – AD = AC – CF.

Suy ra BD = AF.

Xét ∆ADF và ∆BED, có:

AD = BE (giả thiết).

BD = AF (chứng minh trên).

Do đó ∆ADF = ∆BED (cạnh – góc – cạnh).

Suy ra \[\widehat {FDA} = \widehat {DEB}\] (cặp góc tương ứng).

Xét ∆BDE, có: \[\widehat {BDE} + \widehat {EBD} + \widehat {DEB} = 180^\circ \].

Suy ra \[\widehat {BDE} + 60^\circ + \widehat {FDA} = 180^\circ \] (∆ABC đều).

\[\widehat {BDE} + \widehat {EDF} + \widehat {FDA} = 180^\circ \] (kề bù).

Do đó \[\widehat {EDF} = 60^\circ \].

Chứng minh tương tự, ta được \[\widehat {DEF} = 60^\circ \].

Ta suy ra ∆DEF đều.

Do đó đáp án A đúng.

∆DEF là tam giác đều nên ∆DEF không thể là tam giác vuông (vì tam giác đều có các góc bằng nhau và cùng bằng 60°).

Do đó ta loại đáp án B, C, D.

Vậy ta chọn đáp án A.

Câu 2

A. ∆IBC là tam giác cân tại I;

B. ∆IBC là tam giác cân tại B;

C. ∆IBC là tam giác cân tại C;

D. ∆IBC là tam giác đều.

Lời giải

Đáp án đúng là: A

Cho ∆ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc canh  (ảnh 1)

Vì ∆ABC cân tại A nên AB = AC.

Xét ∆ABD và ∆ACE, có:

AB = AC (chứng minh trên).

\[\widehat {BAC}\] là góc chung.

AD = AE (giả thiết).

Do đó ∆ABD = ∆ACE (cạnh – góc – cạnh).

Suy ra \[\widehat {ABD} = \widehat {ACE}\] (cặp cạnh tương ứng).

Vì ∆ABC cân tại A nên \[\widehat {ABC} = \widehat {ACB}\].

Suy ra \[\widehat {ABD} + \widehat {DBC} = \widehat {ACE} + \widehat {ECB}\].

\[\widehat {ABD} = \widehat {ACE}\] (chứng minh trên).

Do đó \[\widehat {DBC} = \widehat {ECB}\] hay \[\widehat {IBC} = \widehat {ICB}\].

Khi đó ta có ∆IBC cân tại I.

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. ∆ACD;

B. ∆ABD;

C. ∆BCD;

D. Hình vẽ bên không có tam giác nào cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. ∆AMN cân tại A;

B. ∆AMN cân tại M;

C. ∆AMN cân tại N;

D. ∆AMN cân tại B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. ∆ABC là tam giác cân tại A;

B. ∆ABC là tam giác cân tại B;

C. ∆ABC là tam giác là cân tại C;

D. ∆ABC là tam giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP