Câu hỏi:

09/08/2022 489 Lưu

Cho hình vẽ.

Cho hình vẽ. Tam giác đều trong hình vẽ bên là: A. tam giác MNP; (ảnh 1)

Tam giác đều trong hình vẽ bên là:

A. ∆MNP;

B. ∆PNH;

C. ∆MPH;

D. ∆MNH.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có \[\widehat {PMN} = 90^\circ \] (∆MNP vuông tại M).

Suy ra \[\widehat {PMH} + \widehat {HMN} = 90^\circ \].

Do đó \[\widehat {HMN} = 90^\circ - \widehat {PMH} = 90^\circ - 30^\circ = 60^\circ \] (1).

∆MNP vuông tại M: \[\widehat {MNH} + \widehat {MPH} = 90^\circ \].

Suy ra \[\widehat {MNH} = 90^\circ - \widehat {MPH} = 90^\circ - 30^\circ = 60^\circ \] (2).

Từ (1), (2), ta suy ra ∆MNH là tam giác đều.

Do đó đáp án D đúng.

Đáp án A sai vì ∆MNP là tam giác vuông tại M.

Đáp án B sai vì ba điểm P, N, H là ba điểm thẳng hàng nên không thể tạo thành một tam giác.

Đáp án C sai vì \[\widehat {MPH} = \widehat {PMH} = 30^\circ \] nên ∆MPH cân tại H.

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. ∆DEF đều;

B. ∆DEF là tam giác vuông tại D;

C. ∆DEF là tam giác vuông cân tại F;

D. ∆DEF là tam giác vuông tại E.

Lời giải

Đáp án đúng là: A

Cho tam giác ABC đều. Trên các cạnh AB, BC, CA lấy theo thứ tự các  (ảnh 1)

Vì ba điểm A, D, B thẳng hàng nên BD = AB – AD.

Vì ba điểm A, F, C thẳng hàng nên AF = AC – CF.

Ta có AB = AC (∆ABC đều) và AD = CF (giả thiết).

Do đó AB – AD = AC – CF.

Suy ra BD = AF.

Xét ∆ADF và ∆BED, có:

AD = BE (giả thiết).

BD = AF (chứng minh trên).

Do đó ∆ADF = ∆BED (cạnh – góc – cạnh).

Suy ra \[\widehat {FDA} = \widehat {DEB}\] (cặp góc tương ứng).

Xét ∆BDE, có: \[\widehat {BDE} + \widehat {EBD} + \widehat {DEB} = 180^\circ \].

Suy ra \[\widehat {BDE} + 60^\circ + \widehat {FDA} = 180^\circ \] (∆ABC đều).

\[\widehat {BDE} + \widehat {EDF} + \widehat {FDA} = 180^\circ \] (kề bù).

Do đó \[\widehat {EDF} = 60^\circ \].

Chứng minh tương tự, ta được \[\widehat {DEF} = 60^\circ \].

Ta suy ra ∆DEF đều.

Do đó đáp án A đúng.

∆DEF là tam giác đều nên ∆DEF không thể là tam giác vuông (vì tam giác đều có các góc bằng nhau và cùng bằng 60°).

Do đó ta loại đáp án B, C, D.

Vậy ta chọn đáp án A.

Lời giải

Đáp án đúng là: C

Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của  (ảnh 1)

Xét ∆EAD và ∆FAD, có:

AF = AE (giả thiết).

\[\widehat {FAD} = \widehat {DAE}\] (AD là phân giác \[\widehat {BAC}\]).

AD là cạnh chung.

Do đó ∆EAD = ∆FAD (cạnh – góc – cạnh).

Suy ra \[\widehat {{E_2}} = \widehat {{F_2}}\].

Ta có \[\widehat {{E_1}} + \widehat {{E_2}} = 180^\circ \] (hai góc kề bù).

Lại có \[\widehat {{F_1}} + \widehat {{F_2}} = 180^\circ \] (hai góc kề bù).

Do đó ta có \[\widehat {{E_1}} = \widehat {{F_1}}\] (1).

∆ABC vuông tại A: \[\widehat {ABC} + \widehat {ACB} = 90^\circ \].

∆CDE vuông tại D: \[\widehat {DEC} + \widehat {ACB} = 90^\circ \].

Do đó \[\widehat {ABC} = \widehat {DEC}\] hay \[\widehat {FBD} = \widehat {{E_1}}\] (2).

Từ (1), (2), ta suy ra \[\widehat {FBD} = \widehat {{F_1}}\].

Do đó ∆FBD cân tại D.

Vậy ta chọn đáp án C.

Câu 3

A. ∆IBC là tam giác cân tại I;

B. ∆IBC là tam giác cân tại B;

C. ∆IBC là tam giác cân tại C;

D. ∆IBC là tam giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. ∆ACD;

B. ∆ABD;

C. ∆BCD;

D. Hình vẽ bên không có tam giác nào cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. ∆AMN cân tại A;

B. ∆AMN cân tại M;

C. ∆AMN cân tại N;

D. ∆AMN cân tại B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. ∆ABC là tam giác cân tại A;

B. ∆ABC là tam giác cân tại B;

C. ∆ABC là tam giác là cân tại C;

D. ∆ABC là tam giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP