Câu hỏi:

09/08/2022 1,481 Lưu

Cho ∆ABC có AB < AC. Lấy E AC sao cho AE = AB. Trên tia đối của tia BA lấy điểm D sao cho BD = EC. Kẻ AH BE tại H, AH cắt DC tại K. Chọn khẳng định đúng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác ABC có AB < AC. Lấy E thuộc AC sao cho AE = AB. (ảnh 1)

Vì AB = AE (giả thiết).

Nên ∆ABE cân tại A.

Suy ra \[\widehat {ABE} = \widehat {AEB}\].

∆ABE có: \[\widehat {BAC} + \widehat {ABE} + \widehat {AEB} = 180^\circ \].

Suy ra \[2\widehat {ABE} = 180^\circ - \widehat {BAC}\]   (1).

Vì ba điểm A, B, D thẳng hàng và B nằm giữa A, D nên AD = AB + BD.

Vì ba điểm A, E, C thẳng hàng và E nằm giữa A, C nên AC = AE + EC.

Mà AB = AE và BD = EC (giả thiết).

Do đó AD = AC.

Suy ra ∆ADC cân tại A.

Khi đó ta có \[\widehat {ADC} = \widehat {ACD}\].

Do đó đáp án A đúng.

∆ADC có: \[\widehat {BAC} + \widehat {ADC} + \widehat {ACD} = 180^\circ \].

Suy ra \[2\widehat {ADC} = 180^\circ - \widehat {BAC}\]   (2).

Từ (1), (2), ta suy ra \[\widehat {ADC} = \widehat {ABE}\].

Mà hai góc này ở vị trí đồng vị.

Do đó BE // DC.

Lại có AH BE (giả thiết).

Suy ra AH DC hay AK DC (*).

Do đó đáp án B đúng.

Xét ∆ADK và ∆ACK, có:

AK là cạnh chung.

AD = AC (chứng minh trên).

\[\widehat {AKD} = \widehat {AKC} = 90^\circ \] (chứng minh trên).

Do đó ∆ADK = ∆ACK (cạnh huyền – cạnh góc vuông).

Suy ra DK = CK (cặp cạnh tương ứng).

Do đó K là trung điểm DC (**).

Từ (*), (**), ta suy ra AK là đường trung trực của đoạn thẳng DC.

Do đó đáp án C đúng.

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Một đường thẳng là đường trung trực của một đoạn thẳng khi thỏa mãn cả hai yếu tố sau:

+ Đi qua trung điểm của đoạn thẳng.

+ Vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng đó.

- Đường thẳng d ở đáp án A có đi qua trung điểm I của đoạn thẳng AB và vuông góc với đoạn thẳng MN tại trung điểm I.

Do đó đường thẳng d ở đáp án A là đường trung trực của đoạn thẳng MN.

- Đường thẳng d ở đáp án B, D có đi qua trung điểm I nhưng không vuông góc với đoạn thẳng MN tại trung điểm I.

Do đó đường thẳng d ở đáp án B, D không là đường trung trực của đoạn thẳng MN.

- Đường thẳng d ở đáp án C không đi qua trung điểm của đoạn thẳng MN.

Do đó đường thẳng d ở đáp án C không là đường trung trực của đoạn thẳng MN.

Vậy ta chọn đáp án A.

Câu 2

Lời giải

Đáp án đúng là: C

Cho tam giác ABC có AB < AC, đường phân giác AD. Trên cạnh AC (ảnh 1)

Xét ∆ABD và ∆AED, có:

AD là cạnh chung.

\[\widehat {BAD} = \widehat {EAD}\] (AD là phân giác của \[\widehat {BAC}\]).

AB = AE (giả thiết).

Do đó ∆ABD = ∆AED (cạnh – góc – cạnh).

Suy ra BD = ED.

Mà AB = AE (giả thiết).

Do đó AD là đường trung trực của đoạn thẳng BE.

Vì AD là đường trung trực của đoạn thẳng BE nên AD vừa vuông góc với BE, vừa đi qua trung điểm của đoạn thẳng BE.

Do đó đáp án C đúng nhất.

Với E AC, ta có AB = AE (giả thiết) và AB < AC (giả thiết).

Do đó AE < AC.

Suy ra ba điểm B, E, C không thẳng hàng.

Mà AD vuông góc với BE.

Nên AD không vuông góc với BC.

Do đó đáp án A sai.

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP