Câu hỏi:

09/08/2022 842

Cho ∆ABC có AB < AC. Lấy E AC sao cho AE = AB. Trên tia đối của tia BA lấy điểm D sao cho BD = EC. Kẻ AH BE tại H, AH cắt DC tại K. Chọn khẳng định đúng.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác ABC có AB < AC. Lấy E thuộc AC sao cho AE = AB. (ảnh 1)

Vì AB = AE (giả thiết).

Nên ∆ABE cân tại A.

Suy ra \[\widehat {ABE} = \widehat {AEB}\].

∆ABE có: \[\widehat {BAC} + \widehat {ABE} + \widehat {AEB} = 180^\circ \].

Suy ra \[2\widehat {ABE} = 180^\circ - \widehat {BAC}\]   (1).

Vì ba điểm A, B, D thẳng hàng và B nằm giữa A, D nên AD = AB + BD.

Vì ba điểm A, E, C thẳng hàng và E nằm giữa A, C nên AC = AE + EC.

Mà AB = AE và BD = EC (giả thiết).

Do đó AD = AC.

Suy ra ∆ADC cân tại A.

Khi đó ta có \[\widehat {ADC} = \widehat {ACD}\].

Do đó đáp án A đúng.

∆ADC có: \[\widehat {BAC} + \widehat {ADC} + \widehat {ACD} = 180^\circ \].

Suy ra \[2\widehat {ADC} = 180^\circ - \widehat {BAC}\]   (2).

Từ (1), (2), ta suy ra \[\widehat {ADC} = \widehat {ABE}\].

Mà hai góc này ở vị trí đồng vị.

Do đó BE // DC.

Lại có AH BE (giả thiết).

Suy ra AH DC hay AK DC (*).

Do đó đáp án B đúng.

Xét ∆ADK và ∆ACK, có:

AK là cạnh chung.

AD = AC (chứng minh trên).

\[\widehat {AKD} = \widehat {AKC} = 90^\circ \] (chứng minh trên).

Do đó ∆ADK = ∆ACK (cạnh huyền – cạnh góc vuông).

Suy ra DK = CK (cặp cạnh tương ứng).

Do đó K là trung điểm DC (**).

Từ (*), (**), ta suy ra AK là đường trung trực của đoạn thẳng DC.

Do đó đáp án C đúng.

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \[\widehat {xOy}\] (\[0^\circ < \widehat {xOy} < 90^\circ \]), Ot là tia phân giác của \[\widehat {xOy}\] và H là một điểm bất kỳ thuộc tia Ot. Qua H, lần lượt vẽ đường thẳng d và d’ thỏa mãn d vuông góc với Ox tại A, cắt Oy tại C và d’ vuông góc với Oy tại B, cắt Ox tại D. Khẳng định nào sau đây sai?

Xem đáp án » 09/08/2022 1,216

Câu 2:

Cho ∆ABC có AB < AC, đường phân giác AD. Trên cạnh AC, lấy điểm E sao cho AE = AB. Kết luận nào sau đây đúng nhất?

Xem đáp án » 09/08/2022 1,138

Câu 3:

Đường thẳng d trong hình vẽ nào sau đây là đường trung trực của đoạn thẳng MN?

Xem đáp án » 09/08/2022 984

Câu 4:

Cho ∆DEF cân tại D. Lấy điểm K nằm trong tam giác sao cho KE = KF. Kẻ KP vuông góc với DE (P DE), KQ vuông góc với DF (Q DF). Khẳng định nào sau đây sai?

Xem đáp án » 09/08/2022 782

Câu 5:

Cho ∆ABC cân tại A. Gọi M là một điểm nằm trong tam giác sao cho MB = MC, N là trung điểm của BC. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 09/08/2022 698

Câu 6:

Cho \[\widehat {xOy}\] khác góc bẹt. Trên tia phân giác Ot của \[\widehat {xOy}\], lấy điểm I (I ≠ O). Gọi A, B lần lượt là các điểm trên các tia Ox, Oy sao cho OA = OB (O ≠ A và O ≠ B). Kết luận nào sau đây đúng nhất?

Xem đáp án » 09/08/2022 431

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store