Câu hỏi:

09/08/2022 1,171

Cho \[\widehat {xOy}\] (\[0^\circ < \widehat {xOy} < 90^\circ \]), Ot là tia phân giác của \[\widehat {xOy}\] và H là một điểm bất kỳ thuộc tia Ot. Qua H, lần lượt vẽ đường thẳng d và d’ thỏa mãn d vuông góc với Ox tại A, cắt Oy tại C và d’ vuông góc với Oy tại B, cắt Ox tại D. Khẳng định nào sau đây sai?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho góc xOy (0 độ < xOy < 90 độ), Ot là tia phân giác của xOy  (ảnh 1)

Xét ∆HAO và ∆HBO, có:

\[\widehat {HAO} = \widehat {HBO} = 90^\circ \].

\[\widehat {HOA} = \widehat {HOB}\] (OH là phân giác của \[\widehat {xOy}\]).

OH là cạnh chung.

Do đó ∆HAO = ∆HBO (cạnh huyền – góc nhọn).

Suy ra HA = HB và OA = OB (các cặp cạnh tương ứng).

Do đó O, H đều cách đều A, B.

Khi đó OH là đường trung trực của AB.

Do đó đáp án A, D đúng.

Xét ∆OAC và ∆OBD, có:

\[\widehat {OAC} = \widehat {OBD} = 90^\circ \].

OA = OB (chứng minh trên).

\[\widehat {AOB}\] là góc chung.

Do đó ∆OAC = ∆OBD (góc – cạnh – góc).

Suy ra OC = OD (cặp cạnh tương ứng).

Do đó đáp án B sai.

Xét ∆ODH và ∆OCH, có:

OD = OC (chứng minh trên).

\[\widehat {HOD} = \widehat {HOC}\] (OH là phân giác của \[\widehat {xOy}\]).

OH là cạnh chung.

Do đó ∆ODH = ∆OCH (cạnh – góc – cạnh).

Suy ra DH = CH (cặp cạnh tương ứng).

Lại có OC = OD (chứng minh trên).

Do đó OH là đường trung trực của CD.

Do đó đáp án C đúng.

Vậy ta chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC có AB < AC, đường phân giác AD. Trên cạnh AC, lấy điểm E sao cho AE = AB. Kết luận nào sau đây đúng nhất?

Xem đáp án » 09/08/2022 1,098

Câu 2:

Đường thẳng d trong hình vẽ nào sau đây là đường trung trực của đoạn thẳng MN?

Xem đáp án » 09/08/2022 940

Câu 3:

Cho ∆DEF cân tại D. Lấy điểm K nằm trong tam giác sao cho KE = KF. Kẻ KP vuông góc với DE (P DE), KQ vuông góc với DF (Q DF). Khẳng định nào sau đây sai?

Xem đáp án » 09/08/2022 739

Câu 4:

Cho ∆ABC có AB < AC. Lấy E AC sao cho AE = AB. Trên tia đối của tia BA lấy điểm D sao cho BD = EC. Kẻ AH BE tại H, AH cắt DC tại K. Chọn khẳng định đúng.

Xem đáp án » 09/08/2022 716

Câu 5:

Cho ∆ABC cân tại A. Gọi M là một điểm nằm trong tam giác sao cho MB = MC, N là trung điểm của BC. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 09/08/2022 672

Câu 6:

Cho \[\widehat {xOy}\] khác góc bẹt. Trên tia phân giác Ot của \[\widehat {xOy}\], lấy điểm I (I ≠ O). Gọi A, B lần lượt là các điểm trên các tia Ox, Oy sao cho OA = OB (O ≠ A và O ≠ B). Kết luận nào sau đây đúng nhất?

Xem đáp án » 09/08/2022 368

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store