Câu hỏi:

09/08/2022 1,295

Cho ∆DEF cân tại D. Lấy điểm K nằm trong tam giác sao cho KE = KF. Kẻ KP vuông góc với DE (P DE), KQ vuông góc với DF (Q DF). Khẳng định nào sau đây sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác DEF cân tại D. Lấy điểm K nằm trong tam giác sao cho (ảnh 1)

Ta có KE = KF (giả thiết).

Do đó K thuộc đường trung trực của EF (tính chất đường trung trực của một đoạn thẳng).

Suy ra đáp án A đúng.

Xét ∆DEK và ∆DFK, có:

DE = DF (∆DEF cân tại D).

KE = KF (giả thiết).

DK là cạnh chung.

Do đó ∆DEK = ∆DFK (cạnh – cạnh – cạnh).

Suy ra \[\widehat {{D_1}} = \widehat {{D_2}}\] (cặp góc tương ứng).

Xét ∆DPK và ∆DQK, có:

\[\widehat {DPK} = \widehat {DQK} = 90^\circ \].

DK là cạnh chung.

\[\widehat {{D_1}} = \widehat {{D_2}}\] (chứng minh trên).

Do đó ∆DPK = ∆DQK (cạnh huyền – góc nhọn).

Suy ra DP = DQ và KP = KQ (các cặp cạnh tương ứng).

Khi đó D, K thuộc đường trung trực của PQ (tính chất đường trung trực của một đoạn thẳng).

Suy ra DK là đường trung trực của PQ (tính chất đường trung trực của một đoạn thẳng).

Do đó đáp án B đúng, D sai.

Ta có KE = KF (giả thiết) và DE = DF (∆DEF cân tại D).

Suy ra DK là đường trung trực của EF (tính chất đường trung trực của một đoạn thẳng).

Do đó đáp án C đúng.

Vậy ta chọn đáp án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đường thẳng d trong hình vẽ nào sau đây là đường trung trực của đoạn thẳng MN?

Xem đáp án » 09/08/2022 1,931

Câu 2:

Cho ∆ABC có AB < AC, đường phân giác AD. Trên cạnh AC, lấy điểm E sao cho AE = AB. Kết luận nào sau đây đúng nhất?

Xem đáp án » 09/08/2022 1,815

Câu 3:

Cho \[\widehat {xOy}\] (\[0^\circ < \widehat {xOy} < 90^\circ \]), Ot là tia phân giác của \[\widehat {xOy}\] và H là một điểm bất kỳ thuộc tia Ot. Qua H, lần lượt vẽ đường thẳng d và d’ thỏa mãn d vuông góc với Ox tại A, cắt Oy tại C và d’ vuông góc với Oy tại B, cắt Ox tại D. Khẳng định nào sau đây sai?

Xem đáp án » 09/08/2022 1,658

Câu 4:

Cho ∆ABC có AB < AC. Lấy E AC sao cho AE = AB. Trên tia đối của tia BA lấy điểm D sao cho BD = EC. Kẻ AH BE tại H, AH cắt DC tại K. Chọn khẳng định đúng.

Xem đáp án » 09/08/2022 1,425

Câu 5:

Cho ∆ABC cân tại A. Gọi M là một điểm nằm trong tam giác sao cho MB = MC, N là trung điểm của BC. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 09/08/2022 1,103

Câu 6:

Cho \[\widehat {xOy}\] khác góc bẹt. Trên tia phân giác Ot của \[\widehat {xOy}\], lấy điểm I (I ≠ O). Gọi A, B lần lượt là các điểm trên các tia Ox, Oy sao cho OA = OB (O ≠ A và O ≠ B). Kết luận nào sau đây đúng nhất?

Xem đáp án » 09/08/2022 687
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay