Câu hỏi:

13/08/2022 4,284

Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng 5/18  , hỏi tổ có bao nhiêu học sinh nữ?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số học sinh nữ là n (2 ≤ n ≤ 9, n N).

Chọn bất kỳ 2 học sinh ta có C92  = 36 cách.

Do đó số phần tử của không gian mẫu là n(Ω) = 36.

Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.

Để chọn 2 học sinh được 2 học sinh nữ có:

 Cn2=n!2!.(n2)!=n(n1)(n2)!2(n2)! =12n(n-1) cách.

Do đó số kết quả thuận lợi cho biến cố A là: n(A) = 1/2  n(n – 1).

Xác suất để chọn được 2 học sinh nữ là:

P(A)=n(A)n(Ω)=12n(n1)36 =n(n1)72

Mà theo bài P(A) = 5/18

Do đó ta có: n(n1)72=518

Û n(n – 1) = 20

Û n2 – n – 20 = 0

Û n = 5.

Ta chọn phương án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:

Xem đáp án » 13/08/2022 20,036

Câu 2:

Từ các chữ số {1; 2; 3; 4; 5; 6}, lập một số bất kì gồm 3 chữ số. Xác suất để số nhận được chia hết cho 6 là:

Xem đáp án » 13/08/2022 17,010

Câu 3:

Một ban đại diện gồm 5 người được thành lập từ 10 người có tên sau đây: Lan, Mai, Minh, Thu, Miên, An, Hà, Thanh, Mơ, Nga. Tính xác xuất để ít nhất 3 người trong ban đại diện có tên bắt đầu bằng chữ M.

Xem đáp án » 13/08/2022 6,099

Câu 4:

Một hộp chứa 18 quả cầu gồm 8 quả cầu màu xanh và 10 quả cầu màu trắng. Chọn ngẫu nhiên 2 quả từ hộp đó. Xác xuất để chọn được 2 quả cầu cùng màu là:

Xem đáp án » 13/08/2022 2,399

Câu 5:

Tung một đồng xu cân đối và đồng chất 3 lần liên tiếp. Xác suất của biến cố A: “Trong 3 lần tung có ít nhất 1 lần xuất hiện mặt sấp” là:

Xem đáp án » 13/08/2022 2,199

Câu 6:

Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

Xem đáp án » 13/08/2022 1,903
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua