Câu hỏi:

24/08/2022 251

Tập xác định của hàm số \(y = f\left( x \right) = \frac{{{x^2} - \sqrt {2 - x} }}{{\left( {{x^2} - x} \right)\sqrt {x + 1} }}\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Biểu thức f(x) có nghĩa khi và chỉ khi \(\left\{ \begin{array}{l}2 - x \ge 0\\{x^2} - x \ne 0\\x + 1 > 0\end{array} \right.\).

Tức là, \(\left\{ \begin{array}{l}x \le 2\\\left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\\x > - 1\end{array} \right.\)

Vì vậy \(\left\{ \begin{array}{l} - 1 < x \le 2\\\left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\end{array} \right.\)

Do đó tập xác định của hàm số đã cho là D = (–1; 2] \ {0; 1}.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Vì thuê nhà một tháng hết 5 (triệu đồng).

Nên khi thuê nhà x tháng, số tiền gia đình bạn Hoa phải chi trả là 5x (triệu đồng).

Do phải tốn tiền dịch vụ 1 triệu đồng.

Nên số tiền gia đình bạn Hoa phải trả khi thuê nhà x tháng là 5x + 1 (triệu đồng).

Tức là, y = 5x + 1.

Vậy ta chọn phương án C.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ta đặt \(f\left( x \right) = \frac{{\sqrt {x - 2m + 3} }}{{x - m}} + \frac{{3x - 1}}{{\sqrt { - x + m + 5} }}\).

Gọi D là tập xác định của hàm số đã cho.

Biểu thức f(x) có nghĩa (x D) khi và chỉ khi \(\left\{ \begin{array}{l}x - 2m + 3 \ge 0\\x - m \ne 0\\ - x + m + 5 > 0\end{array} \right.\)

Tức là, \(\left\{ \begin{array}{l}x \ge 2m - 3\\x \ne m\\x < m + 5\end{array} \right.\)

Hàm số đã cho xác định trên khoảng (0; 1) khi và chỉ khi (0; 1) D.

Tức là, \(\left\{ \begin{array}{l}2m - 3 \le 0\\m + 5 \ge 1\\m \notin \left( {0;1} \right)\end{array} \right.\)

Khi đó ta có \(\left\{ \begin{array}{l}m \le \frac{3}{2}\\m \ge - 4\\\left[ \begin{array}{l}m \ge 1\\m \le 0\end{array} \right.\end{array} \right.\)

Vì vậy \(m \in \left[ { - 4;0} \right] \cup \left[ {1;\frac{3}{2}} \right]\).

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP