Câu hỏi:
24/08/2022 671Cho hàm số \[y = h\left( x \right) = \left\{ \begin{array}{l} - 2\left( {{x^2} + 1} \right),\,\,\,khi\,\,x \le 1\\4\sqrt {x - 1} ,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 1\end{array} \right.\]. Khi đó \(h\left( {\frac{{\sqrt 2 }}{2}} \right)\) bằng:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Vì \(\frac{{\sqrt 2 }}{2} < 1\) nên ta có \(h\left( {\frac{{\sqrt 2 }}{2}} \right) = - 2\left[ {{{\left( {\frac{{\sqrt 2 }}{2}} \right)}^2} + 1} \right] = - 3\).
Vậy ta chọn đáp án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Cách 1:
Hàm số đã cho có dạng y = ax2 + bx + c, với a = –1, b = 2, c = 3.
∆ = b2 – 4ac = 22 – 4.(–1).3 = 16 > 0.
Suy ra phương trình –x2 + 2x + 3 = 0 có 2 nghiệm x1, x2 phân biệt.
Vì vậy đồ thị hàm số bậc hai y = –x2 + 2x + 3 cắt trục hoành tại hai điểm lần lượt có hoành độ là x1, x2.
Vậy ta chọn phương án D.
Cách 2:
Vẽ đường thẳng y = 0 biểu diễn như trong hình dưới đây:
Do đó đồ thị hàm số cắt trục hoành (y = 0) tại hai điểm phân biệt.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì đồ thị là một parabol có bề lõm quay xuống dưới nên a < 0.
Vì đỉnh S của parabol nằm bên phải trục Oy nên ta có hoành độ của đỉnh S là một số dương.
Nghĩa là, \(\frac{{ - b}}{{2a}} > 0\).
Mà a < 0.
Suy ra –b < 0.
Do đó b > 0.
Ngoài ra, parabol cắt trục Oy tại điểm M có tung độ là c > 0.
Vậy a < 0, b > 0, c > 0.
Do đó ta chọn đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.