Câu hỏi:

24/08/2022 574

Xét tính đồng biến, nghịch biến của hàm số \(y = \sqrt[3]{x} + 3\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Xét hàm số \(y = f\left( x \right) = \sqrt[3]{x} + 3\).

Tập xác định của hàm số này là D = ℝ.

Lấy x1, x2 tùy ý thuộc ℝ sao cho x1 < x2, ta có: x1 < x2.

Suy ra \(\sqrt[3]{{{x_1}}} < \sqrt[3]{{{x_2}}}\).

Khi đó ta có \(\sqrt[3]{{{x_1}}} + 3 < \sqrt[3]{{{x_2}}} + 3\).

Do đó f(x1) < f(x2).

Vì vậy hàm số đã cho đồng biến (tăng) trên ℝ.

Vậy ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cách 1:

Hàm số đã cho có dạng y = ax2 + bx + c, với a = –1, b = 2, c = 3.

∆ = b2 – 4ac = 22 – 4.(–1).3 = 16 > 0.

Suy ra phương trình –x2 + 2x + 3 = 0 có 2 nghiệm x1, x2 phân biệt.

Vì vậy đồ thị hàm số bậc hai y = –x2 + 2x + 3 cắt trục hoành tại hai điểm lần lượt có hoành độ là x1, x2.

Vậy ta chọn phương án D.

Cách 2:

Vẽ đường thẳng y = 0 biểu diễn như trong hình dưới đây:

Media VietJack

Do đó đồ thị hàm số cắt trục hoành (y = 0) tại hai điểm phân biệt.

Câu 2

Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ:

Media VietJack

Mệnh đề nào dưới đây đúng?

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Media VietJack

Vì đồ thị là một parabol có bề lõm quay xuống dưới nên a < 0.

Vì đỉnh S của parabol nằm bên phải trục Oy nên ta có hoành độ của đỉnh S là một số dương.

Nghĩa là, \(\frac{{ - b}}{{2a}} > 0\).

Mà a < 0.

Suy ra –b < 0.

Do đó b > 0.

Ngoài ra, parabol cắt trục Oy tại điểm M có tung độ là c > 0.

Vậy a < 0, b > 0, c > 0.

Do đó ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đồ thị dưới đây là của hàm số nào sau đây?
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số y = –x2 – x – 1. Tập giá trị của hàm số đã cho là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số y = 2x2 – 4x + 3 có đồ thị là parabol (P). Mệnh đề nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Hàm số bậc hai có bảng biến thiên như hình vẽ dưới đây là:
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay