Câu hỏi:

24/08/2022 2,093

Cho tam giác ABC bất kì có BC = a, AC = b và AB = c. Gọi ha, hb, hc độ dài các đường cao lần lượt ứng với các cạnh BC, CA, AB. Biết tam giác ABC có diện tích là S. Khẳng định nào sau đây là đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có công thức tính diện tích tam giác ABC là:

S = \(\frac{1}{2}\)aha = \(\frac{1}{2}\)bhb = \(\frac{1}{2}\)chc

Do đó ta có: ha = \(\frac{{2S}}{a};\) hb = \(\frac{{2S}}{b};\) hc = \(\frac{{2S}}{c}.\)

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC bất kì có BC = a, AC = b và AB = c. Đẳng thức nào đúng?

Xem đáp án » 24/08/2022 14,864

Câu 2:

Cho tam giác ABC bất kì có BC = a, AC = b và AB = c. Công thức tính diện tích tam giác ABC nào sau đây là đúng:

Xem đáp án » 24/08/2022 5,074

Câu 3:

Cho tam giác ABCAB = c, BC = a và AC = b. Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC. Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 24/08/2022 2,996

Câu 4:

Cho tam giác ABC có BC = a, AC = b và AB = c. Biết \(\widehat C = 120^\circ .\) Khẳng định nào sau đây là đúng?

Xem đáp án » 24/08/2022 2,128

Câu 5:

Cho tam giác ABC bất kì có BC = a, AC = b và AB = c. Gọi R, r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp tam giác; p, S lần lượt là nửa chu vi và diện tích tam giác. Khẳng định nào sau đây là đúng?

Xem đáp án » 24/08/2022 1,152

Câu 6:

Cho tam giác ABC có \[\frac{{{b^2} + {c^2}--{a^2}}}{{2bc}} > 0\]. Khi đó:

Xem đáp án » 24/08/2022 685

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store