Câu hỏi:

25/08/2022 1,412 Lưu

Cho tam giác ABCAB = c, BC = a và AC = b. Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC. Trong các mệnh đề sau, mệnh đề nào sai?

A. \(\frac{a}{{\sin A}} = 2R;\)
B. Media VietJack.
C. b = 2R.sinA;
D. c = 2R.sinC.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Theo định lí sin ta có: \[\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\] Do đó A đúng.

Từ \[\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\] ta suy ra \(b = \frac{a}{{\sin A}}.\sin B = \frac{{a.\sin B}}{{\sin A}}.\) Do đó B đúng.

Ta cũng có hệ quả định lí sin: b = 2R.sinB và c = 2R.sinC.

Do đó C sai và D đúng.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. cotα > 0;
B. tanα > 0;
C. cosα > 0;
D. sinα > 0.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Nếu góc α thỏa mãn 90° ≤ α ≤ 180° thì α là góc tù.

Khi đó sinα > 0, cosα < 0, tanα < 0, cotα < 0.

Do đó ta chọn phương án D.

Câu 2

A. \[\sin \alpha = \frac{3}{5}\]\(co{\rm{s}}\alpha \,{\rm{ = }}\frac{4}{5};\)
B. \[\sin \alpha = \frac{4}{5}\]\[co{\rm{s}}\alpha \,{\rm{ = }}\frac{3}{5};\]
C. \[\sin \alpha = \frac{{16}}{{25}}\]\(co{\rm{s}}\alpha \,{\rm{ = }}\frac{9}{{25}}\);
D. \[\sin \alpha = \frac{9}{{25}}\] \[co{\rm{s}}\alpha \,{\rm{ = }}\frac{{16}}{{25}}.\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Với điểm \[M\left( {\frac{4}{5};\frac{3}{5}} \right)\], ta có \(\widehat {xOM} = \alpha \). Khi đó theo định nghĩa, ta có:

sinα = yM = \(\frac{3}{5}\);

cosα = xM = \(\frac{4}{5}\).

Vậy ta chọn phương án A.

Câu 3

A. cotα và cosα;
B. sinα và tanα;
C. cosα và cotα;
D. cosα và tanα.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. b2 = a2 + c2 – ac.cosB;
B. a2 = b2 + c2 + 2bc.cosA;
C. c2 = b2 + a2 + ab.cosC;
D. c2 = b2 + a2 – 2ab.cosC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP