Câu hỏi:

13/07/2024 1,020

b, Chứng minh CH là tia phân giác của ACE^

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì tứ giác AHEC là tứ giác nội tiếp nên:

ACH^=12sdAH (hai góc nội tiếp cùng chắn cung AH) (1)

Theo câu a, tứ giác AHEC  nội tiếp đường tròn đường kính AC.

Theo đề bài: BAC^=900(Vì ΔABCvuông tại A)

ABlà tiếp tuyến của đường tròn tâm O, đường kính AC.

BAH^=12sdAH (góc tạo bởi tia tiếp tuyến và dây cung ) (2)

Từ (1) và (2) suy ra ACH^=BAH^    (3)

Vì tứ giác AHEC  là tứ giác nội tiếp nên:

EAH^=ECH^=12sdEH(hai góc nội tiếp cùng chắn cung AH ) (4)

Xét ΔABD có AH là đường cao, đồng thời là đường trung tuyến nên ΔABD cân tại AAH là phân giác của BAD^BAH^=EAH^(5)

Từ (3), (4), (5) suy ra ACH^=ECH^

Vậy CH là tia phân giác của ACE^

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai đội công nhân cùng làm một công việc thì xong trong 4 giờ. Nếu mỗi đội làm riêng xong được công việc ấy, thì đội thứ hai cần nhiều hơn đội thứ nhất là 6 giờ. Hỏi mỗi đội làm riêng xong công việc ấy trong bao lâu ?

Xem đáp án » 13/07/2024 3,239

Câu 2:

a, Giải phương trình x24x+4+x=8

Xem đáp án » 13/07/2024 1,587

Câu 3:

b, Chứng minh rằng: 24+16224162=42

Xem đáp án » 13/07/2024 1,069

Câu 4:

Giải hệ phương trình: x+y=42xy=7

Xem đáp án » 13/07/2024 1,025

Câu 5:

Rút gọn biểu thức A=5203+45

Xem đáp án » 13/07/2024 638

Câu 6:

Gọi x1;x2 là hai nghiệm của phương trình. Tìm các giá trị của m để x12+x22=8

Xem đáp án » 11/07/2024 635

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL