Câu hỏi:

12/07/2024 386

a) Giải hệ phương trình sau :x2+y24x=57x12021+x22021=1

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) +Nếu x>2 thì x1>1x12021+x22020>1Hệ phương trình vô nghiệm

+Nếu x<12x>1x12021+x22020>1Hệ phương trình vô nghiệm

+Nếu 1<x<20<x1<10<2x<1

Khi đó ta có : x12021<x1=x1x22020=2x2020<2x=2x

x12021+x22020=1<x1+2x=1Hệ phương trình vô nghiệm

+Nếu x = 1 (thỏa mãn (2), thay vào (1) ta có :1+y24=57y2=60y=±215

+Nếu x = 2 (thỏa mãn (2), thay vào (1) , ta có :

4+y28=57y2=61y=±61

Vậy hệ phương trình đã cho có nghiệm

x;y1;215;1;215;2;61;2;61

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

b) Ta có : ab20a2ab+b0a+b2ab>ab

Do đó a+bab>0.ab0 

Suy ra P=abaab+b0 với a0,b0,ab(đpcm)

Lời giải

b) Ta có : a2+b3a2b3=2a23b2

a,b2a23b2a2+b3a2b3

a2+b3a2b3

a2+b3+a2b3a2+b3a2b32a22b3a=b=0

Vậy với a,b,nếu a2+b3cũng là số hữu tỉ thì a=b=0(dfcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP