Câu hỏi:

13/07/2024 2,708

Cho tam giác ABC có A^=80°, B^=60°. Hai tia phân giác của góc B và C cắt nhau tại I. Vẽ tia phân giác ngoài tại đỉnh B cắt tia CI tại D. Chứng minh rằng BDC^=C^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* Tìm cách giải. Đề bài cho số đo A^; B^ nên hiển nhiên tính được số đo góc C. Dựa theo kết luận của bài toán thì chúng ta chỉ cần tính số đo góc BCD. Khi tính toán số đo góc, chúng ta lưu ý giả thiết có yếu tố tia phân giác.

* Trình bày lời giải.

ABC có A^+B^+C^=180° (tính chất)

80°+60°+C^=180°; C^=40°.

ABC có ABx^=A^+C^=120°

B1^=B2^=12ABx^=60°

Ta có: C1^=C2^=12C^=20°.

BCD có: BDC^+C1^+CBD^=180°

                  BDC^+20°+60°+60°=180°BDC^=40°

  Do đó BDC^=C^.

Media VietJack

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm x, trong các hình vẽ sau:

Media VietJack

Xem đáp án » 12/07/2024 6,841

Câu 2:

Tam giác ABC có B^>C^. Tia phân giác BAC^ cắt BC tại D.

a) Chứng minh ADC^ADB^=B^C^.

Xem đáp án » 13/07/2024 4,449

Câu 3:

b) Đường thẳng chứa tia phân giác góc ngoài ở đỉnh A của tam giác ABC cắt đường thẳng BC tại E. Chứng minh rằng AEB^=B^C^2.

Xem đáp án » 12/07/2024 2,959

Câu 4:

Cho ABC có A^=90°. Kẻ AH vuông góc với BCHBC. Các tia phân giác góc C và góc BAH cắt nhau tại K. Chứng minh rằng AKCK.

Xem đáp án » 13/07/2024 2,224

Câu 5:

Cho tam giác ABC, O là điểm nằm trong tam giác.

a) Chứng minh rằng BOC^=A^+ABO^+ACO^.

Xem đáp án » 11/07/2024 2,112

Câu 6:

Chứng minh với mỗi tam giác bao giờ cũng tồn tại một góc ngoài không lớn hơn 120°.

Xem đáp án » 13/07/2024 2,015
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua