Câu hỏi:

19/10/2022 1,573

Cho tam thức bậc hai f(x) = x2 – 10x + 2. Kết luận nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

f(1) = 12 – 10.1 + 2 = –7 < 0.

Do đó phương án B, D sai.

f(–2) = (–2)2 – 10.(–2) + 2 = 26 > 0.

Do đó phương án C đúng, phương án A sai.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ.

Cho hàm số y = f(x) = ax^2 + bx + c có đồ thị như hình vẽ.  Đặt delta = b^2 – 4ac.  (ảnh 1)

Đặt ∆ = b2 – 4ac. Chọn khẳng định đúng?

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Quan sát đồ thị, ta thấy:

Đồ thị y = f(x) cắt trục Ox tại hai điểm phân biệt có hoành độ lần lượt là x1 = 1; x2 = 4.

Suy ra f(x) có 2 nghiệm phân biệt x1 = 1; x2 = 4.

Do đó ∆ > 0.

Trên khoảng (–∞; 1) và (4; +∞), ta có f(x) > 0. Suy ra a > 0.

Vậy ta có a > 0, ∆ > 0.

Ta chọn phương án A.

Câu 2

Cho f(x) = –x2 – 4x + 5. Có bao nhiêu giá trị nguyên của x thỏa mãn f(x) ≥ 0?

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tam thức bậc hai f(x) = –x2 – 4x + 5 có ∆’ = (–2)2 – (–1).5 = 9 > 0.

Suy ra f(x) có hai nghiệm phân biệt là:

x1=2+91=5;  x2=291=1.

Ta lại có a = –1 < 0.

Do đó ta có:

f(x) âm trên hai khoảng (–∞; –5) và (1; +∞);

f(x) dương trên khoảng (–5; 1);

f(x) = 0 khi x = –5 hoặc x = 1.

Vì vậy bất phương trình f(x) ≥ 0 có tập nghiệm là [–5; 1].

Trên đoạn [–5; 1], ta thấy có 7 giá trị nguyên là: –5; –4; –3; –2; –1; 0; 1.

Vậy ta chọn phương án B.

Câu 3

Cho hàm số bậc hai f(x) có đồ thị như hình bên.

Cho hàm số bậc hai f(x) có đồ thị như hình bên.  Tập nghiệm của bất phương trình f(x) lớn hơn bằng 0 là (ảnh 1)

Tập nghiệm của bất phương trình f(x) ≥ 0 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam thức bậc hai f(x) = x2 + 1. Mệnh đề nào sau đây đúng nhất?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam thức bậc hai f(x) = –2x2 + 8x – 8. Trong các mệnh đề sau, mệnh đề nào đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phương trình 4x23=x có nghiệm là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay