Câu hỏi:

27/09/2019 26,722

Cho hai điểm A(1; 2)   B( 4; 6).Hỏi có mấy điểm M trên trục tung sao cho diện tích tam giác MAB bằng 1 ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

+ Ta có: AB=(3 ;4) và AB= 5.

Do điểm M nằm trên trục tung nên tọa độ điểm M có dạng M(0; y)

+Khi đó diện tích tam giác MAB là S=12.AB.d( M; AB)

Thay số 1= 1/2.5.d( M; AB) nên d( M;AB)=25

+ Viết phương trình đường thẳng AB: đi qua  A( 1; 2) và nhận AB=(3 ;4) làm VTCP nên nhận n(4 ;-3) làm VTPT.

Suy ra phương trình tổng quát: 4( x-1)- 3( y-2) =0

Hay 4x- 3y+ 2= 0

+ ta có: 

+ TH1: nếu -3y+ 2= 2 thì y= 0 và M( 0;0)

+ TH2: Nếu -3y+ 2= -2 thì y=4/3 và M( 0; 4/3).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Do A và B lần lượt nằm trên trục Ox, Oy nên tọa độ của chứng có dạng :

A( xA ; 0)  và B ( 0 ; yB)

Ta có M  là trung điểm của AB nên :

Suy ra phương trình đường thẳng AB  là :

Hay 3x- 5y- 30 =0

Lời giải

Đáp án :D

+Ta có hai đường thẳng AB và AC cắt nhau tại A nên tọa độ điểm A là nghiệm hệ phương trình:

5x-2y+6=04x+7y-21=0A(0;3) và AH(1;-2)

+Ta có BH vuông góc với AC nên đường thẳng BH qua  H(1;1) và nhận vecto u(4; 7) làm VTCP và u(7; -4) làm VTPT. Suy ra phương trình đường thẳng BH là:

7( x-1) – 4( y-1) =0

=> 7x- 4y -3= 0

+ ta có  AB và BH cắt nhau tại B nên tọa độ điểm B là nghiệm hệ phương trình:

+Phương trình BC nhận AH(1;-2) là VTPT và qua B(-5; -192)

Suy ra phương trình (BC) :

Hay x-2y-14= 0 .

Câu 3

Phương trình của đường thẳng qua A( 2; 5)  và cách B( 5; 1)  một khoảng bằng 3 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay