Cho tam giác ABC có A(1; 1), B(1; – 3), C(– 5; 9). Bán kính đường tròn nội tiếp tam giác ABC gần với giá trị:
Cho tam giác ABC có A(1; 1), B(1; – 3), C(– 5; 9). Bán kính đường tròn nội tiếp tam giác ABC gần với giá trị:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Gọi M và N lần lượt là trung điểm của BC và AB.
Khi đó M( – 2; 3) và N(1; – 1).
Ta có: = (– 6; 8)
Phương trình đường trung trực của đoạn thẳng AC nhận = (3; – 4) làm vectơ pháp tuyến và đi qua N( 1; – 1) là: 3(x – 1) – 4(y + 1) = 0 ⇔ 3x – 4y – 7 = 0.
Ta có:
Phương trình đường trung trực của đoạn thẳng BC nhận = (1; – 2) làm vectơ pháp tuyến và đi qua M( – 2; 3) là: x + 2 – 2(y – 3) = 0 ⇔ x – 2y + 8 = 0.
Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Do đó I là giao điểm của các đường trung trực nên tọa độ điểm I là nghiệm của hệ phương trình:
⇒ = (– 22; ) ⇒ IA = .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi I là tâm của đường tròn (C)
Vì I ∈ d nên I(6t + 10; t)
Theo giả thiết ta có: d (I; d1) = d (I; d2) = R
⇔ =
⇔
⇒
⇔
⇔
+ Với t = 0 thì I (10; 0) và R = 7.
Do đó phương trình đường tròn (C) là: (x − 10)2 + y2 = 49
+ Với t = thì I và R = .
Do đó phương trình đường tròn (C) là: .
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Gọi phương trình đường tròn (C) có dạng : x2 + y2 – 2ax – 2by + c = 0
Vì đường tròn (C) đi qua 3 điểm M; N; P nên ta có hệ phương trình:
⇒ ⇒
Vậy phương trình đường tròn (C) là: x2 + y2 – 4x – 2y – 20 = 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.