Câu hỏi:

28/10/2022 1,370

Viết phương trình tiếp tuyến ∆ của đường tròn (C) : x2 + y2 – 2x + 4y + 4 = 0 . Biết rằng tiếp tuyến vuông góc với đường thẳng x + 2y + 5 = 0

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Đường tròn (C) có tâm I(1; −2) và bán kính R = 1

Đường thẳng x + 2y + 5 = 0 có vectơ pháp tuyến là n1(1;2)

Theo giả thiết ta có: đường thẳng ∆ vuông góc với đường thẳng x + 2y + 5 = 0 nên đường thẳng ∆ nhận n1 làm vectơ chỉ phương. Do đó vectơ pháp tuyến của đường thẳng ∆ là nΔ(2;1).

Phương trình đường thẳng ∆ có dạng 2x – y + m = 0

Vì ∆ là tiếp tuyến của (C) nên d(I; ∆) = R

2+2+m12+22 = 1

4+m=5 

4+m=54+m=5 

 m=54m=54

+ Với m = 54 thì phương trình của ∆ là: 2x – y + 54 = 0

+ Với m = -54 thì phương trình của ∆ là: 2x – y -54 = 0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong hệ toạ độ Oxy, cho ba đường thẳng d: x − 6y − 10 = 0; d1 : 3x + 4y + 5 = 0 và d2 : 4x – 3y – 5 = 0. Phương trình đường tròn (C) có tâm thuộc d ; và tiếp xúc với 2 đường thẳng d1 và d2 là:

Xem đáp án » 28/10/2022 15,653

Câu 2:

Phương trình đường tròn đi qua ba điểm M(-2; 4); N(5; 5); P(6; -2) là:

Xem đáp án » 28/10/2022 13,722

Câu 3:

Cho đường thẳng d: 2x – y – 5 = 0 và hai điểm A(1; 2) và B(4; 1). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A, B

Xem đáp án » 28/10/2022 639

Câu 4:

Cho tam giác ABC có A(1; 1), B(1; – 3), C(– 5; 9). Bán kính đường tròn nội tiếp tam giác ABC gần với giá trị:

Xem đáp án » 28/10/2022 308

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store