Câu hỏi:
28/10/2022 3,514
Viết phương trình tiếp tuyến ∆ của đường tròn (C) : x2 + y2 – 2x + 4y + 4 = 0 . Biết rằng tiếp tuyến vuông góc với đường thẳng x + 2y + 5 = 0
Viết phương trình tiếp tuyến ∆ của đường tròn (C) : x2 + y2 – 2x + 4y + 4 = 0 . Biết rằng tiếp tuyến vuông góc với đường thẳng x + 2y + 5 = 0
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Đường tròn (C) có tâm I(1; −2) và bán kính R = 1
Đường thẳng x + 2y + 5 = 0 có vectơ pháp tuyến là
Theo giả thiết ta có: đường thẳng ∆ vuông góc với đường thẳng x + 2y + 5 = 0 nên đường thẳng ∆ nhận làm vectơ chỉ phương. Do đó vectơ pháp tuyến của đường thẳng ∆ là .
Phương trình đường thẳng ∆ có dạng 2x – y + m = 0
Vì ∆ là tiếp tuyến của (C) nên d(I; ∆) = R
⇔ = 1
⇔
⇔
⇔
+ Với m = thì phương trình của ∆ là: 2x – y + = 0
+ Với m = thì phương trình của ∆ là: 2x – y = 0
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi I là tâm của đường tròn (C)
Vì I ∈ d nên I(6t + 10; t)
Theo giả thiết ta có: d (I; d1) = d (I; d2) = R
⇔ =
⇔
⇒
⇔
⇔
+ Với t = 0 thì I (10; 0) và R = 7.
Do đó phương trình đường tròn (C) là: (x − 10)2 + y2 = 49
+ Với t = thì I và R = .
Do đó phương trình đường tròn (C) là: .
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Gọi phương trình đường tròn (C) có dạng : x2 + y2 – 2ax – 2by + c = 0
Vì đường tròn (C) đi qua 3 điểm M; N; P nên ta có hệ phương trình:
⇒ ⇒
Vậy phương trình đường tròn (C) là: x2 + y2 – 4x – 2y – 20 = 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.