Câu hỏi:
29/10/2022 431
Một hội đồng gồm 2 giáo viên và 3 học sinh được chọn từ một nhóm 5 giáo viên và 6 học sinh. Hỏi có bao nhiêu cách chọn?
Một hội đồng gồm 2 giáo viên và 3 học sinh được chọn từ một nhóm 5 giáo viên và 6 học sinh. Hỏi có bao nhiêu cách chọn?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Công đoạn 1, chọn giáo viên
Mỗi cách chọn 2 giáo viên trong 5 giáo viên là một tổ hợp chập 2 của 5 phần tử. Vậy số cách chọn ra 2 giáo viên là: = 10.
Công đoạn 2, chọn học sinh
Mỗi cách chọn 3 học sinh trong 6 học sinh là một tổ hợp chập 3 của 6 phần tử. Vậy số cách chọn ra 3 học sinh là: = 20
Tổng kết, áp dụng quy tắc nhân số cách chọn một hội đồng gồm 2 giáo viên và 3 học sinh là: 10.20 = 200 (cách)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có số cách xếp sách văn là 5! cách xếp
Số cách xếp sách Toán là 7! cách xếp
Trường hợp 1, sách Văn đứng trước sách Toán ta có số cách xếp là 5!.7! cách xếp
Trường hợp 2, sách Toán đứng trước sách Văn ta có số cách xếp là 7!.5! cách xếp
Tổng kết, áp dụng quy tắc cộng ta có số cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài sao cho sách Văn phải xếp kề nhau và sách Toán xếp kề nhau là 5!.7! + 7!.5! = 2.5!.7!
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi số cần tìm có dạng : , a ≠ 0
Công đoạn 1, chọn số e có 1 cách chọn (vì số chia hết cho 10 nên e chỉ có thể chọn là số 0)
Công đoạn 2, chọn số a có 9 cách chọn (vì a ≠ 0 nên a chỉ được chọn một trong 9 số 1; 2; 3 ; 4; 5; 6; 7; 8; 9)
Công đoạn 3, chọn số b có 10 cách chọn (vì b chọn tuỳ ý nên b có thể chọn 1 trong 10 số 0; 1; 2; 3 ; 4; 5; 6; 7; 8; 9)
Công đoạn 4, chọn số c có 10 cách chọn (vì c chọn tuỳ ý nên c có thể chọn 1 trong 10 số 0; 1; 2; 3 ; 4; 5; 6; 7; 8; 9)
Công đoạn 5, chọn số d có 10 cách chọn (vì d chọn tuỳ ý nên d có thể chọn 1 trong 10 số 0; 1; 2; 3 ; 4; 5; 6; 7; 8; 9)
Tổng kết, theo quy tắc nhân ta có Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là: 1.9.10.10.10 = 9000 (số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.