Câu hỏi:
25/01/2021 6,161Trong mặt phẳng với hệ trục tọa đô, cho hai đường thẳng x+ y-1= 0 và 3x –y+ 5= 0. Hãy tìm diện tích hình bình hành có hai cạnh nằm trên hai đường thẳng đã cho, một đỉnh là giao điểm của hai đường thẳng đó và giao điểm của hai đường chéo là I(3;3).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Gọi hình bình hành là ABCD và
d:x+ y-1 = 0, ∆: 3x – y+ 5= 0 .
Không làm mất tính tổng quát giả sử:
Ta có : . Vì I(3;3) là tâm hình bình hành nên C(7;4) ;
=> Đường thẳng ACcó pt là: x- 4y + 9= 0.
Do => Đường thẳng BC đi qua điểm C và có vtpt có pt là: 3x – y- 17= 0.
Khi đó :
Ta có:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tròn (C) đi qua hai điểm A( 1;3) và B( 3;1) và có tâm nằm trên đường thẳng d: 2x –y + 7= 0 có phương trình là:
Câu 2:
Cho đường tròn (C): (x- 2)2+ (y-2) 2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A( 5; - 1) là:
Câu 3:
Đường tròn (C) đi qua điểm A( 2;4) và tiếp xúc với các trục tọa độ có phương trình là:
Câu 4:
Tìm phương trình chính tắc của Elip có trục lớn gấp đôi trục bé và đi qua điểm (2;-2).
Câu 5:
Trong mặt phẳng với hệ trục tọa đô Oxy , cho hai đường thẳng ∆1: x- y+ 1= 0 và ∆2: 2x + y-1 = 0 và điểm P (2;1) .Viết phương trình đường thẳng đi qua điểm P và cắt hai đường thẳng ∆1, ∆2 lần lượt tại hai điểm A: B sao cho P là trung điểm AB?
Câu 6:
Cho đường tròn (C) : x2+ y2+ 6x -2y + 5= 0 và đường thẳng d đi qua điểm A(- 4;2) , cắt (C) tại hai điểm M; N sao cho A là trung điểm của MN. Phương trình của đường thẳng d là:
Câu 7:
Đường tròn (C) tiếp xúc với trục tung tại điểm A( 0; -2) và đi qua điểm B( 4; -2) có phương trình là:
về câu hỏi!