Câu hỏi:

31/10/2022 4,437

Cho hàm số bậc hai y=fx=ax2+bx+c,a0 có đồ thị như hình vẽ dưới.

Cho hàm số bậc hai y=f(x)=ax^2 +bx+c (a khác 0)  có đồ thị như hình vẽ dưới.   (ảnh 1)

Tìm m để phương trình fx+2018m+m=2m có 4 nghiệm thực phân biệt?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Trước hết ta có m0 .

+) Đặt (P) là đồ thị hàm số  y=fx  khi đó đồ thị hàm số y=fx+2018m  chỉ là tịnh tiến (P) sang trái 2018m đơn vị, do vậy số nghiệm phương trình  fx+2018m+m=2m  bằng số nghiệm phương trình fx+m=2m .

+) Đồ thị hàm số y=fx+m  có tung độ đỉnh là m4 , để phương trình fx+m=2m  có 4 nghiệm thì điều kiện cần là đồ thị hàm số y=fx+m  có hình dáng:

Cho hàm số bậc hai y=f(x)=ax^2 +bx+c (a khác 0)  có đồ thị như hình vẽ dưới.   (ảnh 2)

Khi đó thì m4<0m<4

+) Điều kiện đủ để cắt tại 4 điểm phân biệt là 0<2m<4m0<m<43 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một chiếc cổng như hình vẽ, trong đó CD=6m , AD=4m , phía trên cổng có dạng hình parabol

Một chiếc cổng như hình vẽ, trong đó CD=6m , AD=4m , phía trên cổng có dạng hình parabol (ảnh 1)


Người ta cần thiết kế cổng sao cho những chiến xe container chở hàng với bề ngang thùng xe là 4m, chiều cao là 5,2mcó thể đi qua được (chiều cao được tính từ mặt đường đến nóc thùng xe và thùng xe có dạng hình hộp chữ nhật). Hỏi đỉnh I của parabol (theo mép dưới của cổng) cách mặt đất tối thiểu là bao nhiêu ?

Xem đáp án » 02/11/2022 12,844

Câu 2:

Tìm các giá trị của tham số m  để cho giá trị nhỏ nhất của hàm số y=fx=x2+2m+1x+m21 Trên đoạn 0;1  bằng 1.

Xem đáp án » 31/10/2022 10,181

Câu 3:

Cho hàm số: y=fx=mx22xm1    C

Với giá trị nào của m thì giá trị lớn nhất của hàm số (C) đạt giá trị nhỏ nhất.

Xem đáp án » 13/07/2024 8,828

Câu 4:

Cho hàm số fx=4x24mx+m22m+2  ( m là tham số). Gọi S  là tập hợp tất cả các giá trị của m  sao cho Minfx0;2=3 . Khẳng định nào sau đây đúng:

Xem đáp án » 01/11/2022 7,305

Câu 5:

Cho Parabol (P):y=12x2 và đường thẳng (d):y=m+1xm212 ( m là tham số). Có bao nhiêu giá trị nguyên dương của m thì đường thẳng (d)  cắt Parabol (P)  tại hai điểm A(x1;y1),B(x2;y2)  sao cho biểu thức T=y1+y2x1x2(x1+x2) đạt giá trị nhỏ nhất.

Xem đáp án » 30/10/2022 7,109

Câu 6:

Cho hàm số y=12x2+mx+m+15 . Có bao nhiêu giá trị của tham số m  để hàm số xác định trên đoạn 1;3.

Xem đáp án » 28/10/2022 6,834

Câu 7:

Cho hàm số y=f(x)=4x24ax+(a22a+2)

Có bao nhiêu giá trị của a  sao cho giá trị nhỏ nhất củatrên đoạn [0;2]  là bằng  5?

Xem đáp án » 31/10/2022 6,297

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn