Câu hỏi:

03/11/2022 889

Một cổng của một trường đại học hình Parabol cao 20 m và bề rộng của cổng tại chân cổng là 20 m. Bề rộng của cổng tại chỗ cách đỉnh cổng 4 m là:

Một cổng của một trường đại học hình Parabol cao 20 m và bề rộng của cổng tại chân (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Một cổng của một trường đại học hình Parabol cao 20 m và bề rộng của cổng tại chân (ảnh 2)

Chọn hệ trục tọa độ Oxy như hình vẽ.

Gọi O là đỉnh cổng, A là chân cổng và C, D lần lượt là hai bên trái, phải chân cổng.

Theo bài ra ta có: OA = 20 m, CD = 20 m.

Gọi phương trình Parabol của cổng là y2 =2px.

Ta có: AC = AD = CD : 2 = 10 (m)

Do đó điểm D có tung độ là 10.

OA = 20 nên điểm D có hoành độ là 20.

Thay D(20; 10) vào phương trình (P) ta có: 102=2p.20p=52

Suy ra y2 = 5x.

Thay tọa độ điểm E cách đỉnh 4 m (x = 4) vào (P) ta có:

y2 = 5x = 5 . 4 = 20 y=20=25m

Vậy bề rộng của cổng tại chỗ cách đỉnh 4 m là 25m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Một tòa tháp có mặt cắt hình hypebol có phương trình x^2/36- y^2/49=1. Biết khoảng (ảnh 1)

Gọi r là bán kính đáy của tháp (r > 0).

Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.

Chọn điểm M(r; –25) nằm trên hypebol.

Ta suy ra r23625249=1.

r236=1+25249=67449.

r2=67449.36=2426449.

Suy ra r=6674722,25 (m).

Vậy bán kính đáy của tháp bằng khoảng 22,25 m.

Ta chọn phương án B.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Đường thẳng D: x + 2y – 6 = 0 có vectơ pháp tuyến là nΔ=1;2.

Gọi nd=a;b là vectơ pháp tuyến của đường thẳng d.

Khi đó hệ số góc của đường thẳng d là k=ab.

Góc giữa hai đường thẳng d và là 45° nên ta có:

cosd,Δ=cosnd,nΔ=cos45°

Hay 1.a+2.b12+22.a2+b2=12

5.a2+b2=2.a+2b

5(a2 + b2) = 2(a + 2b)2

5a2 + 5b2 = 2a2 + 8ab + 8b2

3a2 – 8ab – 3b2 = 0

a=3ba=13bab=3ab=13k=ab=3k=ab=13.

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP