Câu hỏi:

03/11/2022 3,589

Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = x2 + 5x + 2m cắt trục Ox tại hai điểm phân biệt A, B thoả mãn OA = 4OB. Tổng các phần tử của S bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Xét phương trình hoành độ giao điểm x2 + 5x + 2m = 0 (*).

Để đồ thị hàm số y = x2 + 5x + 2m cắt trục Ox tại 2 điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt ∆ = 25 – 8m > 0 m < 258.

Gọi x1, x2 là hai nghiệm phân biệt của phương trình (*) A(x1; 0) và B(x2; 0).

Áp dụng định lí Vi-ét ta có: x1+x2=5x1x2=2m(**).

Theo đề bài ta có: OA = 4OB

4|x2| = |x1| x1=4x2x1=4x2

TH1: x1 = 4x2, thay vào hệ (**) ta có:

x2+4x2=5x2.4x2=2mx2=1    4=2mx2=1         m=2(t/m).

TH2: −x1 = 4x2, thay vào hệ (**) ta có:

x24x2=5x2.(4x2)=2mx2=53        1009=2mx2=53           m=509  (t/m)

S = 2;509.

Vậy tổng các phần tử của S bằng 2 + 509= 329.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Với g = 9,8 m/s2, góc phát cầu α = 45°, vận tốc ban đầu v0 = 8 m/s, phương trình quỹ đạo của cầu là: y = 49320x2 + x + 0,7 (với x ≥ 0).

Vị trí cầu rơi chạm đất là giao điểm của parabol và trục hoành nên giải phương trình

y = 49320x2 + x + 0,7 = 0 ta được x1 ≈ 7,17 và x2 ≈ −0,64.

Giá trị nghiệm dương cho ta khoảng cách từ vị trí người chơi cầu lông đến vị trí cầu rơi chạm đất là 7,17 m.

Câu 2

Hãy xác định parabol (P): y = ax2 + bx + c biết rằng đồ thị (P) có điểm thấp nhất là B(−2; 4) và đi qua A(0; 6).

Lời giải

Đáp án đúng là: B

Vì (P) là parabol nên ta có a ≠ 0.

Đồ thị (P) có điểm thấp nhất là B(−2; 4) Þ đồ thị hàm số có bề lõm hướng lên trên hay a > 0 và B là đỉnh của đồ thị hàm số.

Ta có: b2a= −2 Û b = 4a. (1)

Ta lại có: b24ac4a= 4 Û b2 – 4ac = −16a. (2)

Đồ thị (P) đi qua điểm A(0; 6) Þ a.02 + b.0 + c = 6 Þ c = 6.

Thay c = 6 vào (2) ta được: b2 – 24a = −16a b2 = 8a. (3)

Từ (1) và (3) ta có hệ phương trình:

b=4ab2=8aÛb=4a16a28a=0Ûb=4aa=0  ktma=12  tmÛa=12b=2.

Vậy parabol (P): y = 12x2 + 2x + 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Xác định parabol y = ax2 + bx + c (a ≠ 0), biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; 12).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay